ZeroAtInftyContinuousMapClass in normed additive groups #
In this file we give a characterization of the predicate zero_at_infty
from
ZeroAtInftyContinuousMapClass
. A continuous map f
is zero at infinity if and only if
for every ε > 0
there exists a r : ℝ
such that for all x : E
with r < ‖x‖
it holds that
‖f x‖ < ε
.
theorem
ZeroAtInftyContinuousMapClass.norm_le
{E : Type u_1}
{F : Type u_2}
{𝓕 : Type u_3}
[SeminormedAddGroup E]
[SeminormedAddCommGroup F]
[FunLike 𝓕 E F]
[ZeroAtInftyContinuousMapClass 𝓕 E F]
(f : 𝓕)
(ε : ℝ)
(hε : 0 < ε)
:
theorem
zero_at_infty_of_norm_le
{E : Type u_1}
{F : Type u_2}
[SeminormedAddGroup E]
[SeminormedAddCommGroup F]
[ProperSpace E]
(f : E → F)
(h : ∀ (ε : ℝ), 0 < ε → ∃ (r : ℝ), ∀ (x : E), r < ‖x‖ → ‖f x‖ < ε)
:
Filter.Tendsto f (Filter.cocompact E) (nhds 0)