Cocompact maps in normed groups #
This file gives a characterization of cocompact maps in terms of norm estimates.
Main statements #
CocompactMapClass.norm_le
: Every cocompact map satisfies a norm estimateContinuousMapClass.toCocompactMapClass_of_norm
: Conversely, this norm estimate implies that a map is cocompact.
theorem
CocompactMapClass.norm_le
{E : Type u_2}
{F : Type u_3}
{𝓕 : Type u_4}
[NormedAddCommGroup E]
[NormedAddCommGroup F]
{f : 𝓕}
[ProperSpace F]
[FunLike 𝓕 E F]
[CocompactMapClass 𝓕 E F]
(ε : ℝ)
:
theorem
Filter.tendsto_cocompact_cocompact_of_norm
{E : Type u_2}
{F : Type u_3}
[NormedAddCommGroup E]
[NormedAddCommGroup F]
[ProperSpace E]
{f : E → F}
(h : ∀ (ε : ℝ), ∃ (r : ℝ), ∀ (x : E), r < ‖x‖ → ε < ‖f x‖)
:
Filter.Tendsto f (Filter.cocompact E) (Filter.cocompact F)
theorem
ContinuousMapClass.toCocompactMapClass_of_norm
{E : Type u_2}
{F : Type u_3}
{𝓕 : Type u_4}
[NormedAddCommGroup E]
[NormedAddCommGroup F]
[ProperSpace E]
[FunLike 𝓕 E F]
[ContinuousMapClass 𝓕 E F]
(h : ∀ (f : 𝓕) (ε : ℝ), ∃ (r : ℝ), ∀ (x : E), r < ‖x‖ → ε < ‖f x‖)
:
CocompactMapClass 𝓕 E F