Documentation

Mathlib.Analysis.Meromorphic.Divisor.MeromorphicFunction

The Divisor of a Meromorphic Function #

This file defines the divisor of a meromorphic function and proves the most basic lemmas about those divisors.

TODO #

Definition of the Divisor #

noncomputable def MeromorphicOn.divisor {๐•œ : Type u_1} [NontriviallyNormedField ๐•œ] {E : Type u_2} [NormedAddCommGroup E] [NormedSpace ๐•œ E] [CompleteSpace E] (f : ๐•œ โ†’ E) (U : Set ๐•œ) :

The divisor of a meromorphic function f, mapping a point z to the order of f at z, and to zero if the order is infinite.

Equations
Instances For
    theorem MeromorphicOn.divisor_def {๐•œ : Type u_1} [NontriviallyNormedField ๐•œ] {z : ๐•œ} {E : Type u_2} [NormedAddCommGroup E] [NormedSpace ๐•œ E] [CompleteSpace E] (f : ๐•œ โ†’ E) (U : Set ๐•œ) :
    (divisor f U) z = if h : MeromorphicOn f U โˆง z โˆˆ U then WithTop.untopD 0 โ‹ฏ.order else 0

    Definition of the divisor

    @[simp]
    theorem MeromorphicOn.divisor_apply {๐•œ : Type u_1} [NontriviallyNormedField ๐•œ] {U : Set ๐•œ} {z : ๐•œ} {E : Type u_2} [NormedAddCommGroup E] [NormedSpace ๐•œ E] [CompleteSpace E] {f : ๐•œ โ†’ E} (hf : MeromorphicOn f U) (hz : z โˆˆ U) :
    (divisor f U) z = WithTop.untopD 0 โ‹ฏ.order

    Simplifier lemma: on U, the divisor of a function f that is meromorphic on U evaluates to order.untopD.

    Behavior under Standard Operations #

    theorem MeromorphicOn.divisor_smul {๐•œ : Type u_1} [NontriviallyNormedField ๐•œ] {U : Set ๐•œ} {E : Type u_2} [NormedAddCommGroup E] [NormedSpace ๐•œ E] [CompleteSpace E] [CompleteSpace ๐•œ] {fโ‚ : ๐•œ โ†’ ๐•œ} {fโ‚‚ : ๐•œ โ†’ E} (hโ‚fโ‚ : MeromorphicOn fโ‚ U) (hโ‚fโ‚‚ : MeromorphicOn fโ‚‚ U) (hโ‚‚fโ‚ : โˆ€ (z : ๐•œ) (hz : z โˆˆ U), โ‹ฏ.order โ‰  โŠค) (hโ‚‚fโ‚‚ : โˆ€ (z : ๐•œ) (hz : z โˆˆ U), โ‹ฏ.order โ‰  โŠค) :
    divisor (fโ‚ โ€ข fโ‚‚) U = divisor fโ‚ U + divisor fโ‚‚ U

    If orders are finite, the divisor of the scalar product of two meromorphic functions is the sum of the divisors.

    See MeromorphicOn.exists_order_ne_top_iff_forall and MeromorphicOn.order_ne_top_of_isPreconnected for two convenient criteria to guarantee conditions hโ‚‚fโ‚ and hโ‚‚fโ‚‚.

    theorem MeromorphicOn.divisor_mul {๐•œ : Type u_1} [NontriviallyNormedField ๐•œ] {U : Set ๐•œ} [CompleteSpace ๐•œ] {fโ‚ fโ‚‚ : ๐•œ โ†’ ๐•œ} (hโ‚fโ‚ : MeromorphicOn fโ‚ U) (hโ‚fโ‚‚ : MeromorphicOn fโ‚‚ U) (hโ‚‚fโ‚ : โˆ€ (z : ๐•œ) (hz : z โˆˆ U), โ‹ฏ.order โ‰  โŠค) (hโ‚‚fโ‚‚ : โˆ€ (z : ๐•œ) (hz : z โˆˆ U), โ‹ฏ.order โ‰  โŠค) :
    divisor (fโ‚ * fโ‚‚) U = divisor fโ‚ U + divisor fโ‚‚ U

    If orders are finite, the divisor of the product of two meromorphic functions is the sum of the divisors.

    See MeromorphicOn.exists_order_ne_top_iff_forall and MeromorphicOn.order_ne_top_of_isPreconnected for two convenient criteria to guarantee conditions hโ‚‚fโ‚ and hโ‚‚fโ‚‚.

    @[simp]
    theorem MeromorphicOn.divisor_inv {๐•œ : Type u_1} [NontriviallyNormedField ๐•œ] {U : Set ๐•œ} [CompleteSpace ๐•œ] {f : ๐•œ โ†’ ๐•œ} :

    The divisor of the inverse is the negative of the divisor.