Properties about the powers of the norm #
In this file we prove that x ↦ ‖x‖ ^ p
is continuously differentiable for
an inner product space and for a real number p > 1
.
TODO #
x ↦ ‖x‖ ^ p
should beC^n
forp > n
.
theorem
hasFDerivAt_norm_rpow
{E : Type u_1}
[NormedAddCommGroup E]
[InnerProductSpace ℝ E]
(x : E)
{p : ℝ}
(hp : 1 < p)
:
theorem
differentiable_norm_rpow
{E : Type u_1}
[NormedAddCommGroup E]
[InnerProductSpace ℝ E]
{p : ℝ}
(hp : 1 < p)
:
Differentiable ℝ fun (x : E) => ‖x‖ ^ p
theorem
Differentiable.fderiv_norm_rpow
{E : Type u_1}
[NormedAddCommGroup E]
[InnerProductSpace ℝ E]
{F : Type u_2}
[NormedAddCommGroup F]
[NormedSpace ℝ F]
{f : F → E}
(hf : Differentiable ℝ f)
{x : F}
{p : ℝ}
(hp : 1 < p)
:
theorem
nnnorm_fderiv_norm_rpow_le
{E : Type u_1}
[NormedAddCommGroup E]
[InnerProductSpace ℝ E]
{F : Type u_2}
[NormedAddCommGroup F]
[NormedSpace ℝ F]
{f : F → E}
(hf : Differentiable ℝ f)
{x : F}
{p : NNReal}
(hp : 1 < p)
:
theorem
contDiff_norm_rpow
{E : Type u_1}
[NormedAddCommGroup E]
[InnerProductSpace ℝ E]
{p : ℝ}
(hp : 1 < p)
:
theorem
ContDiff.norm_rpow
{E : Type u_1}
[NormedAddCommGroup E]
[InnerProductSpace ℝ E]
{F : Type u_2}
[NormedAddCommGroup F]
[NormedSpace ℝ F]
{f : F → E}
(hf : ContDiff ℝ 1 f)
{p : ℝ}
(hp : 1 < p)
:
theorem
Differentiable.norm_rpow
{E : Type u_1}
[NormedAddCommGroup E]
[InnerProductSpace ℝ E]
{F : Type u_2}
[NormedAddCommGroup F]
[NormedSpace ℝ F]
{f : F → E}
(hf : Differentiable ℝ f)
{p : ℝ}
(hp : 1 < p)
:
Differentiable ℝ fun (x : F) => ‖f x‖ ^ p