Collection of convex functions #
In this file we prove that certain specific functions are strictly convex, including the following:
Even.strictConvexOn_pow
: For an evenn : ℕ
with2 ≤ n
,fun x => x ^ n
is strictly convex.strictConvexOn_pow
: Forn : ℕ
, with2 ≤ n
,fun x => x ^ n
is strictly convex on $[0,+∞)$.strictConvexOn_zpow
: Form : ℤ
withm ≠ 0, 1
,fun x => x ^ m
is strictly convex on $[0, +∞)$.strictConcaveOn_sin_Icc
:sin
is strictly concave on $[0, π]$strictConcaveOn_cos_Icc
:cos
is strictly concave on $[-π/2, π/2]$
TODO #
These convexity lemmas are proved by checking the sign of the second derivative. If desired, most
of these could also be switched to elementary proofs, like in
Analysis.Convex.SpecificFunctions.Basic
.
x^n
, n : ℕ
is strictly convex on [0, +∞)
for all n
greater than 2
.
theorem
Even.strictConvexOn_pow
{n : ℕ}
(hn : Even n)
(h : n ≠ 0)
:
StrictConvexOn ℝ Set.univ fun (x : ℝ) => x ^ n
x^n
, n : ℕ
is strictly convex on the whole real line whenever n ≠ 0
is even.
theorem
Finset.prod_nonneg_of_card_nonpos_even
{α : Type u_1}
{β : Type u_2}
[LinearOrderedCommRing β]
{f : α → β}
[DecidablePred fun (x : α) => f x ≤ 0]
{s : Finset α}
(h0 : Even (Finset.filter (fun (x : α) => f x ≤ 0) s).card)
:
0 ≤ ∏ x ∈ s, f x
theorem
int_prod_range_pos
{m : ℤ}
{n : ℕ}
(hn : Even n)
(hm : m ∉ Set.Ico 0 ↑n)
:
0 < ∏ k ∈ Finset.range n, (m - ↑k)
theorem
strictConvexOn_zpow
{m : ℤ}
(hm₀ : m ≠ 0)
(hm₁ : m ≠ 1)
:
StrictConvexOn ℝ (Set.Ioi 0) fun (x : ℝ) => x ^ m
x^m
, m : ℤ
is convex on (0, +∞)
for all m
except 0
and 1
.