Documentation

Mathlib.Analysis.Convex.Extrema

Minima and maxima of convex functions #

We show that if a function f : E → β is convex, then a local minimum is also a global minimum, and likewise for concave functions.

theorem IsMinOn.of_isLocalMinOn_of_convexOn_Icc {β : Type u_2} [OrderedAddCommGroup β] [Module β] [OrderedSMul β] {f : β} {a : } {b : } (a_lt_b : a < b) (h_local_min : IsLocalMinOn f (Set.Icc a b) a) (h_conv : ConvexOn (Set.Icc a b) f) :
IsMinOn f (Set.Icc a b) a

Helper lemma for the more general case: IsMinOn.of_isLocalMinOn_of_convexOn.

theorem IsMinOn.of_isLocalMinOn_of_convexOn {E : Type u_1} {β : Type u_2} [AddCommGroup E] [TopologicalSpace E] [Module E] [TopologicalAddGroup E] [ContinuousSMul E] [OrderedAddCommGroup β] [Module β] [OrderedSMul β] {s : Set E} {f : Eβ} {a : E} (a_in_s : a s) (h_localmin : IsLocalMinOn f s a) (h_conv : ConvexOn s f) :
IsMinOn f s a

A local minimum of a convex function is a global minimum, restricted to a set s.

theorem IsMaxOn.of_isLocalMaxOn_of_concaveOn {E : Type u_1} {β : Type u_2} [AddCommGroup E] [TopologicalSpace E] [Module E] [TopologicalAddGroup E] [ContinuousSMul E] [OrderedAddCommGroup β] [Module β] [OrderedSMul β] {s : Set E} {f : Eβ} {a : E} (a_in_s : a s) (h_localmax : IsLocalMaxOn f s a) (h_conc : ConcaveOn s f) :
IsMaxOn f s a

A local maximum of a concave function is a global maximum, restricted to a set s.

theorem IsMinOn.of_isLocalMin_of_convex_univ {E : Type u_1} {β : Type u_2} [AddCommGroup E] [TopologicalSpace E] [Module E] [TopologicalAddGroup E] [ContinuousSMul E] [OrderedAddCommGroup β] [Module β] [OrderedSMul β] {f : Eβ} {a : E} (h_local_min : IsLocalMin f a) (h_conv : ConvexOn Set.univ f) (x : E) :
f a f x

A local minimum of a convex function is a global minimum.

theorem IsMaxOn.of_isLocalMax_of_convex_univ {E : Type u_1} {β : Type u_2} [AddCommGroup E] [TopologicalSpace E] [Module E] [TopologicalAddGroup E] [ContinuousSMul E] [OrderedAddCommGroup β] [Module β] [OrderedSMul β] {f : Eβ} {a : E} (h_local_max : IsLocalMax f a) (h_conc : ConcaveOn Set.univ f) (x : E) :
f x f a

A local maximum of a concave function is a global maximum.