Invariance of the derivative under translation #
We show that if a function f
has derivative f'
at a point a + x
, then f (a + ยท)
has derivative f'
at x
. Similarly for x + a
.
theorem
HasDerivAt.comp_const_add
{๐ : Type u_1}
{F : Type u_2}
[NontriviallyNormedField ๐]
[NormedAddCommGroup F]
[NormedSpace ๐ F]
{f : ๐ โ F}
{f' : F}
(a : ๐)
(x : ๐)
(hf : HasDerivAt f f' (a + x))
:
HasDerivAt (fun (x : ๐) => f (a + x)) f' x
Translation in the domain does not change the derivative.
theorem
HasDerivAt.comp_add_const
{๐ : Type u_1}
{F : Type u_2}
[NontriviallyNormedField ๐]
[NormedAddCommGroup F]
[NormedSpace ๐ F]
{f : ๐ โ F}
{f' : F}
(x : ๐)
(a : ๐)
(hf : HasDerivAt f f' (x + a))
:
HasDerivAt (fun (x : ๐) => f (x + a)) f' x
Translation in the domain does not change the derivative.
theorem
HasDerivAt.comp_const_sub
{๐ : Type u_1}
{F : Type u_2}
[NontriviallyNormedField ๐]
[NormedAddCommGroup F]
[NormedSpace ๐ F]
{f : ๐ โ F}
{f' : F}
(a : ๐)
(x : ๐)
(hf : HasDerivAt f f' (a - x))
:
HasDerivAt (fun (x : ๐) => f (a - x)) (-f') x
Translation in the domain does not change the derivative.
theorem
HasDerivAt.comp_sub_const
{๐ : Type u_1}
{F : Type u_2}
[NontriviallyNormedField ๐]
[NormedAddCommGroup F]
[NormedSpace ๐ F]
{f : ๐ โ F}
{f' : F}
(x : ๐)
(a : ๐)
(hf : HasDerivAt f f' (x - a))
:
HasDerivAt (fun (x : ๐) => f (x - a)) f' x
Translation in the domain does not change the derivative.
theorem
deriv_comp_neg
{๐ : Type u_1}
{F : Type u_2}
[NontriviallyNormedField ๐]
[NormedAddCommGroup F]
[NormedSpace ๐ F]
(f : ๐ โ F)
(x : ๐)
:
The derivative of x โฆ f (-x)
at a
is the negative of the derivative of f
at -a
.
theorem
deriv_comp_const_add
{๐ : Type u_1}
{F : Type u_2}
[NontriviallyNormedField ๐]
[NormedAddCommGroup F]
[NormedSpace ๐ F]
(f : ๐ โ F)
(a : ๐)
(x : ๐)
:
Translation in the domain does not change the derivative.
theorem
deriv_comp_add_const
{๐ : Type u_1}
{F : Type u_2}
[NontriviallyNormedField ๐]
[NormedAddCommGroup F]
[NormedSpace ๐ F]
(f : ๐ โ F)
(a : ๐)
(x : ๐)
:
Translation in the domain does not change the derivative.
theorem
deriv_comp_const_sub
{๐ : Type u_1}
{F : Type u_2}
[NontriviallyNormedField ๐]
[NormedAddCommGroup F]
[NormedSpace ๐ F]
(f : ๐ โ F)
(a : ๐)
(x : ๐)
:
theorem
deriv_comp_sub_const
{๐ : Type u_1}
{F : Type u_2}
[NontriviallyNormedField ๐]
[NormedAddCommGroup F]
[NormedSpace ๐ F]
(f : ๐ โ F)
(a : ๐)
(x : ๐)
: