Derivatives of affine maps #
In this file we prove formulas for one-dimensional derivatives of affine maps f : ๐ โแต[๐] E
. We
also specialise some of these results to AffineMap.lineMap
because it is useful to transfer MVT
from dimension 1 to a domain in higher dimension.
TODO #
Add theorems about deriv
s and fderiv
s of ContinuousAffineMap
s once they will be ported to
Mathlib 4.
Keywords #
affine map, derivative, differentiability
theorem
AffineMap.hasStrictDerivAt
{๐ : Type u_1}
[NontriviallyNormedField ๐]
{E : Type u_2}
[NormedAddCommGroup E]
[NormedSpace ๐ E]
(f : ๐ โแต[๐] E)
{x : ๐}
:
HasStrictDerivAt (โf) (f.linear 1) x
theorem
AffineMap.hasDerivAtFilter
{๐ : Type u_1}
[NontriviallyNormedField ๐]
{E : Type u_2}
[NormedAddCommGroup E]
[NormedSpace ๐ E]
(f : ๐ โแต[๐] E)
{L : Filter ๐}
{x : ๐}
:
HasDerivAtFilter (โf) (f.linear 1) x L
theorem
AffineMap.hasDerivWithinAt
{๐ : Type u_1}
[NontriviallyNormedField ๐]
{E : Type u_2}
[NormedAddCommGroup E]
[NormedSpace ๐ E]
(f : ๐ โแต[๐] E)
{s : Set ๐}
{x : ๐}
:
HasDerivWithinAt (โf) (f.linear 1) s x
theorem
AffineMap.hasDerivAt
{๐ : Type u_1}
[NontriviallyNormedField ๐]
{E : Type u_2}
[NormedAddCommGroup E]
[NormedSpace ๐ E]
(f : ๐ โแต[๐] E)
{x : ๐}
:
HasDerivAt (โf) (f.linear 1) x
theorem
AffineMap.derivWithin
{๐ : Type u_1}
[NontriviallyNormedField ๐]
{E : Type u_2}
[NormedAddCommGroup E]
[NormedSpace ๐ E]
(f : ๐ โแต[๐] E)
{s : Set ๐}
{x : ๐}
(hs : UniqueDiffWithinAt ๐ s x)
:
derivWithin (โf) s x = f.linear 1
@[simp]
theorem
AffineMap.deriv
{๐ : Type u_1}
[NontriviallyNormedField ๐]
{E : Type u_2}
[NormedAddCommGroup E]
[NormedSpace ๐ E]
(f : ๐ โแต[๐] E)
{x : ๐}
:
theorem
AffineMap.differentiableAt
{๐ : Type u_1}
[NontriviallyNormedField ๐]
{E : Type u_2}
[NormedAddCommGroup E]
[NormedSpace ๐ E]
(f : ๐ โแต[๐] E)
{x : ๐}
:
DifferentiableAt ๐ (โf) x
theorem
AffineMap.differentiable
{๐ : Type u_1}
[NontriviallyNormedField ๐]
{E : Type u_2}
[NormedAddCommGroup E]
[NormedSpace ๐ E]
(f : ๐ โแต[๐] E)
:
Differentiable ๐ โf
theorem
AffineMap.differentiableWithinAt
{๐ : Type u_1}
[NontriviallyNormedField ๐]
{E : Type u_2}
[NormedAddCommGroup E]
[NormedSpace ๐ E]
(f : ๐ โแต[๐] E)
{s : Set ๐}
{x : ๐}
:
DifferentiableWithinAt ๐ (โf) s x
theorem
AffineMap.differentiableOn
{๐ : Type u_1}
[NontriviallyNormedField ๐]
{E : Type u_2}
[NormedAddCommGroup E]
[NormedSpace ๐ E]
(f : ๐ โแต[๐] E)
{s : Set ๐}
:
DifferentiableOn ๐ (โf) s
Line map #
In this section we specialize some lemmas to AffineMap.lineMap
because this map is very useful to
deduce higher dimensional lemmas from one-dimensional versions.
theorem
AffineMap.hasStrictDerivAt_lineMap
{๐ : Type u_1}
[NontriviallyNormedField ๐]
{E : Type u_2}
[NormedAddCommGroup E]
[NormedSpace ๐ E]
{a : E}
{b : E}
{x : ๐}
:
HasStrictDerivAt (โ(AffineMap.lineMap a b)) (b - a) x
theorem
AffineMap.hasDerivAt_lineMap
{๐ : Type u_1}
[NontriviallyNormedField ๐]
{E : Type u_2}
[NormedAddCommGroup E]
[NormedSpace ๐ E]
{a : E}
{b : E}
{x : ๐}
:
HasDerivAt (โ(AffineMap.lineMap a b)) (b - a) x
theorem
AffineMap.hasDerivWithinAt_lineMap
{๐ : Type u_1}
[NontriviallyNormedField ๐]
{E : Type u_2}
[NormedAddCommGroup E]
[NormedSpace ๐ E]
{a : E}
{b : E}
{s : Set ๐}
{x : ๐}
:
HasDerivWithinAt (โ(AffineMap.lineMap a b)) (b - a) s x