Documentation

Mathlib.Analysis.Calculus.Deriv.Abs

Derivative of the absolute value #

This file compiles basic derivability properties of the absolute value, and is largely inspired from Mathlib.Analysis.InnerProductSpace.Calculus, which is the analogous file for norms derived from an inner product space.

Tags #

absolute value, derivative

theorem contDiffAt_abs {n : ℕ∞} {x : } (hx : x 0) :
ContDiffAt n (fun (x : ) => |x|) x
theorem ContDiffAt.abs {E : Type u_1} [NormedAddCommGroup E] [NormedSpace E] {n : ℕ∞} {f : E} {x : E} (hf : ContDiffAt n f x) (h₀ : f x 0) :
ContDiffAt n (fun (x : E) => |f x|) x
theorem contDiffWithinAt_abs {n : ℕ∞} {x : } (hx : x 0) (s : Set ) :
ContDiffWithinAt n (fun (x : ) => |x|) s x
theorem ContDiffWithinAt.abs {E : Type u_1} [NormedAddCommGroup E] [NormedSpace E] {n : ℕ∞} {f : E} {s : Set E} {x : E} (hf : ContDiffWithinAt n f s x) (h₀ : f x 0) :
ContDiffWithinAt n (fun (y : E) => |f y|) s x
theorem contDiffOn_abs {n : ℕ∞} {s : Set } (hs : xs, x 0) :
ContDiffOn n (fun (x : ) => |x|) s
theorem ContDiffOn.abs {E : Type u_1} [NormedAddCommGroup E] [NormedSpace E] {n : ℕ∞} {f : E} {s : Set E} (hf : ContDiffOn n f s) (h₀ : xs, f x 0) :
ContDiffOn n (fun (y : E) => |f y|) s
theorem ContDiff.abs {E : Type u_1} [NormedAddCommGroup E] [NormedSpace E] {n : ℕ∞} {f : E} (hf : ContDiff n f) (h₀ : ∀ (x : E), f x 0) :
ContDiff n fun (y : E) => |f y|
theorem hasStrictDerivAt_abs_neg {x : } (hx : x < 0) :
HasStrictDerivAt (fun (x : ) => |x|) (-1) x
theorem hasDerivAt_abs_neg {x : } (hx : x < 0) :
HasDerivAt (fun (x : ) => |x|) (-1) x
theorem hasStrictDerivAt_abs_pos {x : } (hx : 0 < x) :
HasStrictDerivAt (fun (x : ) => |x|) 1 x
theorem hasDerivAt_abs_pos {x : } (hx : 0 < x) :
HasDerivAt (fun (x : ) => |x|) 1 x
theorem hasStrictDerivAt_abs {x : } (hx : x 0) :
HasStrictDerivAt (fun (x : ) => |x|) (↑(SignType.sign x)) x
theorem hasDerivAt_abs {x : } (hx : x 0) :
HasDerivAt (fun (x : ) => |x|) (↑(SignType.sign x)) x
theorem HasStrictFDerivAt.abs_of_neg {E : Type u_1} [NormedAddCommGroup E] [NormedSpace E] {f : E} {f' : E →L[] } {x : E} (hf : HasStrictFDerivAt f f' x) (h₀ : f x < 0) :
HasStrictFDerivAt (fun (x : E) => |f x|) (-f') x
theorem HasFDerivAt.abs_of_neg {E : Type u_1} [NormedAddCommGroup E] [NormedSpace E] {f : E} {f' : E →L[] } {x : E} (hf : HasFDerivAt f f' x) (h₀ : f x < 0) :
HasFDerivAt (fun (x : E) => |f x|) (-f') x
theorem HasStrictFDerivAt.abs_of_pos {E : Type u_1} [NormedAddCommGroup E] [NormedSpace E] {f : E} {f' : E →L[] } {x : E} (hf : HasStrictFDerivAt f f' x) (h₀ : 0 < f x) :
HasStrictFDerivAt (fun (x : E) => |f x|) f' x
theorem HasFDerivAt.abs_of_pos {E : Type u_1} [NormedAddCommGroup E] [NormedSpace E] {f : E} {f' : E →L[] } {x : E} (hf : HasFDerivAt f f' x) (h₀ : 0 < f x) :
HasFDerivAt (fun (x : E) => |f x|) f' x
theorem HasStrictFDerivAt.abs {E : Type u_1} [NormedAddCommGroup E] [NormedSpace E] {f : E} {f' : E →L[] } {x : E} (hf : HasStrictFDerivAt f f' x) (h₀ : f x 0) :
HasStrictFDerivAt (fun (x : E) => |f x|) ((SignType.sign (f x)) f') x
theorem HasFDerivAt.abs {E : Type u_1} [NormedAddCommGroup E] [NormedSpace E] {f : E} {f' : E →L[] } {x : E} (hf : HasFDerivAt f f' x) (h₀ : f x 0) :
HasFDerivAt (fun (x : E) => |f x|) ((SignType.sign (f x)) f') x
theorem hasDerivWithinAt_abs_neg (s : Set ) {x : } (hx : x < 0) :
HasDerivWithinAt (fun (x : ) => |x|) (-1) s x
theorem hasDerivWithinAt_abs_pos (s : Set ) {x : } (hx : 0 < x) :
HasDerivWithinAt (fun (x : ) => |x|) 1 s x
theorem hasDerivWithinAt_abs (s : Set ) {x : } (hx : x 0) :
HasDerivWithinAt (fun (x : ) => |x|) (↑(SignType.sign x)) s x
theorem HasFDerivWithinAt.abs_of_neg {E : Type u_1} [NormedAddCommGroup E] [NormedSpace E] {f : E} {f' : E →L[] } {s : Set E} {x : E} (hf : HasFDerivWithinAt f f' s x) (h₀ : f x < 0) :
HasFDerivWithinAt (fun (x : E) => |f x|) (-f') s x
theorem HasFDerivWithinAt.abs_of_pos {E : Type u_1} [NormedAddCommGroup E] [NormedSpace E] {f : E} {f' : E →L[] } {s : Set E} {x : E} (hf : HasFDerivWithinAt f f' s x) (h₀ : 0 < f x) :
HasFDerivWithinAt (fun (x : E) => |f x|) f' s x
theorem HasFDerivWithinAt.abs {E : Type u_1} [NormedAddCommGroup E] [NormedSpace E] {f : E} {f' : E →L[] } {s : Set E} {x : E} (hf : HasFDerivWithinAt f f' s x) (h₀ : f x 0) :
HasFDerivWithinAt (fun (x : E) => |f x|) ((SignType.sign (f x)) f') s x
theorem differentiableAt_abs_neg {x : } (hx : x < 0) :
DifferentiableAt (fun (x : ) => |x|) x
theorem differentiableAt_abs_pos {x : } (hx : 0 < x) :
DifferentiableAt (fun (x : ) => |x|) x
theorem differentiableAt_abs {x : } (hx : x 0) :
DifferentiableAt (fun (x : ) => |x|) x
theorem DifferentiableAt.abs_of_neg {E : Type u_1} [NormedAddCommGroup E] [NormedSpace E] {f : E} {x : E} (hf : DifferentiableAt f x) (h₀ : f x < 0) :
DifferentiableAt (fun (x : E) => |f x|) x
theorem DifferentiableAt.abs_of_pos {E : Type u_1} [NormedAddCommGroup E] [NormedSpace E] {f : E} {x : E} (hf : DifferentiableAt f x) (h₀ : 0 < f x) :
DifferentiableAt (fun (x : E) => |f x|) x
theorem DifferentiableAt.abs {E : Type u_1} [NormedAddCommGroup E] [NormedSpace E] {f : E} {x : E} (hf : DifferentiableAt f x) (h₀ : f x 0) :
DifferentiableAt (fun (x : E) => |f x|) x
theorem differentiableWithinAt_abs_neg (s : Set ) {x : } (hx : x < 0) :
DifferentiableWithinAt (fun (x : ) => |x|) s x
theorem differentiableWithinAt_abs_pos (s : Set ) {x : } (hx : 0 < x) :
DifferentiableWithinAt (fun (x : ) => |x|) s x
theorem differentiableWithinAt_abs (s : Set ) {x : } (hx : x 0) :
DifferentiableWithinAt (fun (x : ) => |x|) s x
theorem DifferentiableWithinAt.abs_of_neg {E : Type u_1} [NormedAddCommGroup E] [NormedSpace E] {f : E} {s : Set E} {x : E} (hf : DifferentiableWithinAt f s x) (h₀ : f x < 0) :
DifferentiableWithinAt (fun (x : E) => |f x|) s x
theorem DifferentiableWithinAt.abs_of_pos {E : Type u_1} [NormedAddCommGroup E] [NormedSpace E] {f : E} {s : Set E} {x : E} (hf : DifferentiableWithinAt f s x) (h₀ : 0 < f x) :
DifferentiableWithinAt (fun (x : E) => |f x|) s x
theorem DifferentiableWithinAt.abs {E : Type u_1} [NormedAddCommGroup E] [NormedSpace E] {f : E} {s : Set E} {x : E} (hf : DifferentiableWithinAt f s x) (h₀ : f x 0) :
DifferentiableWithinAt (fun (x : E) => |f x|) s x
theorem differentiableOn_abs {s : Set } (hs : xs, x 0) :
DifferentiableOn (fun (x : ) => |x|) s
theorem DifferentiableOn.abs {E : Type u_1} [NormedAddCommGroup E] [NormedSpace E] {f : E} {s : Set E} (hf : DifferentiableOn f s) (h₀ : xs, f x 0) :
DifferentiableOn (fun (x : E) => |f x|) s
theorem Differentiable.abs {E : Type u_1} [NormedAddCommGroup E] [NormedSpace E] {f : E} (hf : Differentiable f) (h₀ : ∀ (x : E), f x 0) :
Differentiable fun (x : E) => |f x|
theorem deriv_abs_neg {x : } (hx : x < 0) :
deriv (fun (x : ) => |x|) x = -1
theorem deriv_abs_pos {x : } (hx : 0 < x) :
deriv (fun (x : ) => |x|) x = 1
theorem deriv_abs_zero :
deriv (fun (x : ) => |x|) 0 = 0
theorem deriv_abs (x : ) :
deriv (fun (x : ) => |x|) x = (SignType.sign x)