The positive (and negative) parts of a selfadjoint element in a C⋆-algebra #
This file defines the positive and negative parts of a selfadjoint element in a C⋆-algebra via the continuous functional calculus and develops the basic API, including the uniqueness of the positive and negative parts.
noncomputable instance
CStarAlgebra.instPosPart
{A : Type u_1}
[NonUnitalRing A]
[Module ℝ A]
[SMulCommClass ℝ A A]
[IsScalarTower ℝ A A]
[StarRing A]
[TopologicalSpace A]
[NonUnitalContinuousFunctionalCalculus ℝ IsSelfAdjoint]
:
PosPart A
noncomputable instance
CStarAlgebra.instNegPart
{A : Type u_1}
[NonUnitalRing A]
[Module ℝ A]
[SMulCommClass ℝ A A]
[IsScalarTower ℝ A A]
[StarRing A]
[TopologicalSpace A]
[NonUnitalContinuousFunctionalCalculus ℝ IsSelfAdjoint]
:
NegPart A
theorem
CFC.posPart_def
{A : Type u_1}
[NonUnitalRing A]
[Module ℝ A]
[SMulCommClass ℝ A A]
[IsScalarTower ℝ A A]
[StarRing A]
[TopologicalSpace A]
[NonUnitalContinuousFunctionalCalculus ℝ IsSelfAdjoint]
(a : A)
:
theorem
CFC.negPart_def
{A : Type u_1}
[NonUnitalRing A]
[Module ℝ A]
[SMulCommClass ℝ A A]
[IsScalarTower ℝ A A]
[StarRing A]
[TopologicalSpace A]
[NonUnitalContinuousFunctionalCalculus ℝ IsSelfAdjoint]
(a : A)
:
@[simp]
theorem
CFC.posPart_mul_negPart
{A : Type u_1}
[NonUnitalRing A]
[Module ℝ A]
[SMulCommClass ℝ A A]
[IsScalarTower ℝ A A]
[StarRing A]
[TopologicalSpace A]
[NonUnitalContinuousFunctionalCalculus ℝ IsSelfAdjoint]
(a : A)
:
@[simp]
theorem
CFC.negPart_mul_posPart
{A : Type u_1}
[NonUnitalRing A]
[Module ℝ A]
[SMulCommClass ℝ A A]
[IsScalarTower ℝ A A]
[StarRing A]
[TopologicalSpace A]
[NonUnitalContinuousFunctionalCalculus ℝ IsSelfAdjoint]
(a : A)
:
theorem
CFC.posPart_sub_negPart
{A : Type u_1}
[NonUnitalRing A]
[Module ℝ A]
[SMulCommClass ℝ A A]
[IsScalarTower ℝ A A]
[StarRing A]
[TopologicalSpace A]
[NonUnitalContinuousFunctionalCalculus ℝ IsSelfAdjoint]
(a : A)
(ha : autoParam (IsSelfAdjoint a) _auto✝)
:
@[simp]
theorem
CFC.posPart_neg
{A : Type u_1}
[NonUnitalRing A]
[Module ℝ A]
[SMulCommClass ℝ A A]
[IsScalarTower ℝ A A]
[StarRing A]
[TopologicalSpace A]
[NonUnitalContinuousFunctionalCalculus ℝ IsSelfAdjoint]
[UniqueNonUnitalContinuousFunctionalCalculus ℝ A]
(a : A)
:
@[simp]
theorem
CFC.negPart_neg
{A : Type u_1}
[NonUnitalRing A]
[Module ℝ A]
[SMulCommClass ℝ A A]
[IsScalarTower ℝ A A]
[StarRing A]
[TopologicalSpace A]
[NonUnitalContinuousFunctionalCalculus ℝ IsSelfAdjoint]
[UniqueNonUnitalContinuousFunctionalCalculus ℝ A]
(a : A)
:
theorem
CFC.posPart_nonneg
{A : Type u_1}
[NonUnitalRing A]
[Module ℝ A]
[SMulCommClass ℝ A A]
[IsScalarTower ℝ A A]
[StarRing A]
[TopologicalSpace A]
[NonUnitalContinuousFunctionalCalculus ℝ IsSelfAdjoint]
[PartialOrder A]
[StarOrderedRing A]
(a : A)
:
theorem
CFC.negPart_nonneg
{A : Type u_1}
[NonUnitalRing A]
[Module ℝ A]
[SMulCommClass ℝ A A]
[IsScalarTower ℝ A A]
[StarRing A]
[TopologicalSpace A]
[NonUnitalContinuousFunctionalCalculus ℝ IsSelfAdjoint]
[PartialOrder A]
[StarOrderedRing A]
(a : A)
:
theorem
CFC.eq_posPart_iff
{A : Type u_1}
[NonUnitalRing A]
[Module ℝ A]
[SMulCommClass ℝ A A]
[IsScalarTower ℝ A A]
[StarRing A]
[TopologicalSpace A]
[NonUnitalContinuousFunctionalCalculus ℝ IsSelfAdjoint]
[PartialOrder A]
[StarOrderedRing A]
[NonnegSpectrumClass ℝ A]
(a : A)
:
theorem
CFC.negPart_eq_zero_iff
{A : Type u_1}
[NonUnitalRing A]
[Module ℝ A]
[SMulCommClass ℝ A A]
[IsScalarTower ℝ A A]
[StarRing A]
[TopologicalSpace A]
[NonUnitalContinuousFunctionalCalculus ℝ IsSelfAdjoint]
[PartialOrder A]
[StarOrderedRing A]
[NonnegSpectrumClass ℝ A]
(a : A)
(ha : IsSelfAdjoint a)
:
theorem
CFC.eq_negPart_iff
{A : Type u_1}
[NonUnitalRing A]
[Module ℝ A]
[SMulCommClass ℝ A A]
[IsScalarTower ℝ A A]
[StarRing A]
[TopologicalSpace A]
[NonUnitalContinuousFunctionalCalculus ℝ IsSelfAdjoint]
[PartialOrder A]
[StarOrderedRing A]
[NonnegSpectrumClass ℝ A]
(a : A)
:
theorem
CFC.posPart_eq_zero_iff
{A : Type u_1}
[NonUnitalRing A]
[Module ℝ A]
[SMulCommClass ℝ A A]
[IsScalarTower ℝ A A]
[StarRing A]
[TopologicalSpace A]
[NonUnitalContinuousFunctionalCalculus ℝ IsSelfAdjoint]
[PartialOrder A]
[StarOrderedRing A]
[NonnegSpectrumClass ℝ A]
(a : A)
(ha : IsSelfAdjoint a)
:
theorem
CFC.posPart_negPart_unique
{A : Type u_1}
[NonUnitalRing A]
[Module ℝ A]
[SMulCommClass ℝ A A]
[IsScalarTower ℝ A A]
[StarRing A]
[TopologicalSpace A]
[NonUnitalContinuousFunctionalCalculus ℝ IsSelfAdjoint]
[PartialOrder A]
[StarOrderedRing A]
[NonnegSpectrumClass ℝ A]
[UniqueNonUnitalContinuousFunctionalCalculus ℝ A]
[TopologicalRing A]
[T2Space A]
{a : A}
{b : A}
{c : A}
(habc : a = b - c)
(hbc : b * c = 0)
(hb : autoParam (0 ≤ b) _auto✝)
(hc : autoParam (0 ≤ c) _auto✝)
:
The positive and negative parts of a selfadjoint element a
are unique. That is, if
a = b - c
is the difference of nonnegative elements whose product is zero, then these are
precisely a⁺
and a⁻
.