Positive contractions in a C⋆-algebra form an approximate unit #
This file will show (although it does not yet) that the collection of positive contractions (of norm
strictly less than one) in a possibly non-unital C⋆-algebra form an approximate unit. The key step
is to show that this set is directed using the continuous functional calculus applied with the
functions fun x : ℝ≥0, 1 - (1 + x)⁻¹
and fun x : ℝ≥0, x * (1 - x)⁻¹
, which are inverses on
the interval {x : ℝ≥0 | x < 1}
.
Main declarations #
CFC.monotoneOn_one_sub_one_add_inv
: the functionf := fun x : ℝ≥0, 1 - (1 + x)⁻¹
is operator monotone onSet.Ici (0 : A)
(i.e.,cfcₙ f
is monotone on{x : A | 0 ≤ x}
).Set.InvOn.one_sub_one_add_inv
: the functionsf := fun x : ℝ≥0, 1 - (1 + x)⁻¹
andg := fun x : ℝ≥0, x * (1 - x)⁻¹
are inverses on{x : ℝ≥0 | x < 1}
.CStarAlgebra.directedOn_nonneg_ball
: the set{x : A | 0 ≤ x} ∩ Metric.ball 0 1
is directed.
TODO #
- Prove the approximate identity result by following Ken Davidson's proof in "C*-Algebras by Example"
theorem
CFC.monotoneOn_one_sub_one_add_inv
{A : Type u_1}
[NonUnitalCStarAlgebra A]
[PartialOrder A]
[StarOrderedRing A]
:
theorem
norm_cfcₙ_one_sub_one_add_inv_lt_one
{A : Type u_1}
[NonUnitalCStarAlgebra A]
[PartialOrder A]
[StarOrderedRing A]
(a : A)
:
theorem
CStarAlgebra.directedOn_nonneg_ball
{A : Type u_1}
[NonUnitalCStarAlgebra A]
[PartialOrder A]
[StarOrderedRing A]
:
DirectedOn (fun (x1 x2 : A) => x1 ≤ x2) ({x : A | 0 ≤ x} ∩ Metric.ball 0 1)