Kan complexes #
In this file we give the definition of Kan complexes.
In Mathlib/AlgebraicTopology/Quasicategory.lean
we show that every Kan complex is a quasicategory.
TODO #
- Show that the singular simplicial set of a topological space is a Kan complex.
- Generalize the definition to higher universes.
Since
Λ[n, i]
is an object ofSSet.{0}
, the current definition of a Kan complexS
requiresS : SSet.{0}
.
A simplicial set S
is a Kan complex if it satisfies the following horn-filling condition:
for every n : ℕ
and 0 ≤ i ≤ n
,
every map of simplicial sets σ₀ : Λ[n, i] → S
can be extended to a map σ : Δ[n] → S
.
- hornFilling : ∀ ⦃n : ℕ⦄ ⦃i : Fin (n + 1)⦄ (σ₀ : SSet.horn n i ⟶ S), ∃ (σ : SSet.standardSimplex.obj (SimplexCategory.mk n) ⟶ S), σ₀ = CategoryTheory.CategoryStruct.comp (SSet.hornInclusion n i) σ
Instances
theorem
SSet.KanComplex.hornFilling
{S : SSet}
[self : S.KanComplex]
⦃n : ℕ⦄
⦃i : Fin (n + 1)⦄
(σ₀ : SSet.horn n i ⟶ S)
:
∃ (σ : SSet.standardSimplex.obj (SimplexCategory.mk n) ⟶ S),
σ₀ = CategoryTheory.CategoryStruct.comp (SSet.hornInclusion n i) σ