N₁ and N₂ reflects isomorphisms #
In this file, it is shown that the functors
N₁ : SimplicialObject C ⥤ Karoubi (ChainComplex C ℕ)
and
N₂ : Karoubi (SimplicialObject C) ⥤ Karoubi (ChainComplex C ℕ))
reflect isomorphisms for any preadditive category C
.
(See Equivalence.lean
for the general strategy of proof of the Dold-Kan equivalence.)
instance
AlgebraicTopology.DoldKan.instReflectsIsomorphismsSimplicialObjectKaroubiChainComplexNatN₁
{C : Type u_1}
[CategoryTheory.Category.{u_2, u_1} C]
[CategoryTheory.Preadditive C]
:
AlgebraicTopology.DoldKan.N₁.ReflectsIsomorphisms
Equations
- ⋯ = ⋯
theorem
AlgebraicTopology.DoldKan.compatibility_N₂_N₁_karoubi
{C : Type u_1}
[CategoryTheory.Category.{u_2, u_1} C]
[CategoryTheory.Preadditive C]
:
AlgebraicTopology.DoldKan.N₂.comp (CategoryTheory.Idempotents.karoubiChainComplexEquivalence C ℕ).functor = (CategoryTheory.Idempotents.karoubiFunctorCategoryEmbedding SimplexCategoryᵒᵖ C).comp
(AlgebraicTopology.DoldKan.N₁.comp
((CategoryTheory.Idempotents.karoubiChainComplexEquivalence (CategoryTheory.Idempotents.Karoubi C) ℕ).functor.comp
((CategoryTheory.Idempotents.KaroubiKaroubi.equivalence C).inverse.mapHomologicalComplex
(ComplexShape.down ℕ))))
instance
AlgebraicTopology.DoldKan.instReflectsIsomorphismsKaroubiSimplicialObjectChainComplexNatN₂
{C : Type u_1}
[CategoryTheory.Category.{u_2, u_1} C]
[CategoryTheory.Preadditive C]
:
AlgebraicTopology.DoldKan.N₂.ReflectsIsomorphisms
We deduce that N₂ : Karoubi (SimplicialObject C) ⥤ Karoubi (ChainComplex C ℕ))
reflects isomorphisms from the fact that
N₁ : SimplicialObject (Karoubi C) ⥤ Karoubi (ChainComplex (Karoubi C) ℕ)
does.
Equations
- ⋯ = ⋯