Subsets of prime spectra related to modules #
Main results #
LocalizedModule.subsingleton_iff_disjoint
:M[1/f] = 0 ↔ D(f) ∩ Supp M = 0
.Module.isClosed_support
: IfM
is a finiteR
-module, thenSupp M
is closed.
TODO #
- If
M
is finitely presented, the complement ofSupp M
is quasi-compact. (stacks#051B)
theorem
LocalizedModule.subsingleton_iff_disjoint
{R : Type u_1}
{M : Type u_3}
[CommRing R]
[AddCommGroup M]
[Module R M]
{f : R}
:
Subsingleton (LocalizedModule (Submonoid.powers f) M) ↔ Disjoint (↑(PrimeSpectrum.basicOpen f)) (Module.support R M)
M[1/f] = 0
if and only if D(f) ∩ Supp M = 0
.
theorem
Module.stableUnderSpecialization_support
{R : Type u_1}
{M : Type u_3}
[CommRing R]
[AddCommGroup M]
[Module R M]
:
theorem
Module.isClosed_support
{R : Type u_1}
{M : Type u_3}
[CommRing R]
[AddCommGroup M]
[Module R M]
[Module.Finite R M]
:
IsClosed (Module.support R M)
theorem
Module.support_subset_preimage_comap
{R : Type u_1}
{A : Type u_2}
{M : Type u_3}
[CommRing R]
[AddCommGroup M]
[Module R M]
[CommRing A]
[Algebra R A]
[Module A M]
[IsScalarTower R A M]
:
Module.support A M ⊆ ⇑(PrimeSpectrum.comap (algebraMap R A)) ⁻¹' Module.support R M