Morphisms of finite type #
A morphism of schemes f : X ⟶ Y
is locally of finite type if for each affine U ⊆ Y
and
V ⊆ f ⁻¹' U
, The induced map Γ(Y, U) ⟶ Γ(X, V)
is of finite type.
A morphism of schemes is of finite type if it is both locally of finite type and quasi-compact.
We show that these properties are local, and are stable under compositions and base change.
A morphism of schemes f : X ⟶ Y
is locally of finite type if for each affine U ⊆ Y
and
V ⊆ f ⁻¹' U
, The induced map Γ(Y, U) ⟶ Γ(X, V)
is of finite type.
- finiteType_of_affine_subset (U : ↑Y.affineOpens) (V : ↑X.affineOpens) (e : ↑V ≤ (TopologicalSpace.Opens.map f.base).obj ↑U) : (AlgebraicGeometry.Scheme.Hom.appLE f (↑U) (↑V) e).hom.FiniteType
Instances
theorem
AlgebraicGeometry.locallyOfFiniteType_iff
{X Y : AlgebraicGeometry.Scheme}
(f : X ⟶ Y)
:
AlgebraicGeometry.LocallyOfFiniteType f ↔ ∀ (U : ↑Y.affineOpens) (V : ↑X.affineOpens) (e : ↑V ≤ (TopologicalSpace.Opens.map f.base).obj ↑U),
(AlgebraicGeometry.Scheme.Hom.appLE f (↑U) (↑V) e).hom.FiniteType
@[instance 900]
instance
AlgebraicGeometry.locallyOfFiniteType_of_isOpenImmersion
{X Y : AlgebraicGeometry.Scheme}
(f : X ⟶ Y)
[AlgebraicGeometry.IsOpenImmersion f]
:
instance
AlgebraicGeometry.locallyOfFiniteType_comp
{X Y Z : AlgebraicGeometry.Scheme}
(f : X ⟶ Y)
(g : Y ⟶ Z)
[hf : AlgebraicGeometry.LocallyOfFiniteType f]
[hg : AlgebraicGeometry.LocallyOfFiniteType g]
:
theorem
AlgebraicGeometry.locallyOfFiniteType_of_comp
{X Y Z : AlgebraicGeometry.Scheme}
(f : X ⟶ Y)
(g : Y ⟶ Z)
[AlgebraicGeometry.LocallyOfFiniteType (CategoryTheory.CategoryStruct.comp f g)]
: