The 1-hypercover of a glue data #
In this file, given D : Scheme.GlueData
, we construct a 1-hypercover
D.openHypercover
of the scheme D.glued
in the big Zariski site.
We use this 1-hypercover in order to define a constructor D.sheafValGluedMk
for sections over D.glued
of a sheaf of types over the big Zariski site.
Notes #
This contribution was created as part of the AIM workshop "Formalizing algebraic geometry" in June 2024.
noncomputable def
AlgebraicGeometry.Scheme.GlueData.oneHypercover
(D : AlgebraicGeometry.Scheme.GlueData)
:
AlgebraicGeometry.Scheme.zariskiTopology.OneHypercover D.glued
The 1-hypercover of D.glued
in the big Zariski site that is given by the
open cover D.U
from the glue data D
.
The "covering of the intersection of two such open subsets" is the trivial
covering given by D.V
.
Equations
- One or more equations did not get rendered due to their size.
Instances For
@[simp]
theorem
AlgebraicGeometry.Scheme.GlueData.oneHypercover_I₀
(D : AlgebraicGeometry.Scheme.GlueData)
:
D.oneHypercover.I₀ = D.J
@[simp]
theorem
AlgebraicGeometry.Scheme.GlueData.oneHypercover_f
(D : AlgebraicGeometry.Scheme.GlueData)
(i : D.J)
:
D.oneHypercover.f i = D.ι i
@[simp]
theorem
AlgebraicGeometry.Scheme.GlueData.oneHypercover_I₁
(D : AlgebraicGeometry.Scheme.GlueData)
:
∀ (x x_1 : D.J), D.oneHypercover.I₁ x x_1 = PUnit.{u + 1}
@[simp]
theorem
AlgebraicGeometry.Scheme.GlueData.oneHypercover_Y
(D : AlgebraicGeometry.Scheme.GlueData)
(i₁ : D.J)
(i₂ : D.J)
:
∀ (x : PUnit.{u + 1} ), D.oneHypercover.Y x = D.V (i₁, i₂)
@[simp]
theorem
AlgebraicGeometry.Scheme.GlueData.oneHypercover_p₁
(D : AlgebraicGeometry.Scheme.GlueData)
(i₁ : D.J)
(i₂ : D.J)
:
∀ (x : PUnit.{u + 1} ), D.oneHypercover.p₁ x = D.f i₁ i₂
@[simp]
theorem
AlgebraicGeometry.Scheme.GlueData.oneHypercover_X
(D : AlgebraicGeometry.Scheme.GlueData)
:
∀ (a : D.J), D.oneHypercover.X a = D.U a
@[simp]
theorem
AlgebraicGeometry.Scheme.GlueData.oneHypercover_p₂
(D : AlgebraicGeometry.Scheme.GlueData)
(i₁ : D.J)
(i₂ : D.J)
:
∀ (x : PUnit.{u + 1} ), D.oneHypercover.p₂ x = CategoryTheory.CategoryStruct.comp (D.t i₁ i₂) (D.f i₂ i₁)
noncomputable def
AlgebraicGeometry.Scheme.GlueData.sheafValGluedMk
(D : AlgebraicGeometry.Scheme.GlueData)
{F : CategoryTheory.Sheaf AlgebraicGeometry.Scheme.zariskiTopology (Type v)}
(s : (j : D.J) → F.val.obj (Opposite.op (D.U j)))
(h : ∀ (i j : D.J),
F.val.map (D.f i j).op (s i) = F.val.map (CategoryTheory.CategoryStruct.comp (D.f j i).op (D.t i j).op) (s j))
:
F.val.obj (Opposite.op D.glued)
Constructor for sections over D.glued
of a sheaf of types on the big Zariski site.
Equations
- D.sheafValGluedMk s h = (CategoryTheory.Limits.Multifork.IsLimit.sectionsEquiv (D.oneHypercover.isLimitMultifork F)) { val := s, property := ⋯ }
Instances For
@[simp]
theorem
AlgebraicGeometry.Scheme.GlueData.sheafValGluedMk_val
(D : AlgebraicGeometry.Scheme.GlueData)
{F : CategoryTheory.Sheaf AlgebraicGeometry.Scheme.zariskiTopology (Type v)}
(s : (j : D.J) → F.val.obj (Opposite.op (D.U j)))
(h : ∀ (i j : D.J),
F.val.map (D.f i j).op (s i) = F.val.map (CategoryTheory.CategoryStruct.comp (D.f j i).op (D.t i j).op) (s j))
(j : D.J)
:
F.val.map (D.ι j).op (D.sheafValGluedMk s h) = s j