Vertex operators #
In this file we introduce vertex operators as linear maps to Laurent series.
Definitions #
VertexOperator
is anR
-linear map from anR
-moduleV
toLaurentSeries V
.VertexOperator.ncoeff
is the coefficient of a vertex operator under normalized indexing.
TODO #
HasseDerivative
: A divided-power derivative.Locality
: A weak form of commutativity.Residue products
: A family of products onVertexOperator R V
parametrized by integers.
References #
- [G. Mason, Vertex rings and Pierce bundles][mason2017]
- [A. Matsuo, K. Nagatomo, On axioms for a vertex algebra and locality of quantum fields][matsuo1997]
@[reducible, inline]
abbrev
VertexOperator
(R : Type u_3)
(V : Type u_4)
[CommRing R]
[AddCommGroup V]
[Module R V]
:
Type u_4
A vertex operator over a commutative ring R
is an R
-linear map from an R
-module V
to
Laurent series with coefficients in V
. We write this as a specialization of the heterogeneous
case.
Equations
- VertexOperator R V = HVertexOperator ℤ R V V
Instances For
theorem
VertexOperator.ext
{R : Type u_1}
{V : Type u_2}
[CommRing R]
[AddCommGroup V]
[Module R V]
(A B : VertexOperator R V)
(h : ∀ (v : V), A v = B v)
:
A = B
def
VertexOperator.ncoeff
{V : Type u_2}
{R : Type u_3}
[CommRing R]
[AddCommGroup V]
[Module R V]
(A : VertexOperator R V)
(n : ℤ)
:
Module.End R V
The coefficient of a vertex operator under normalized indexing.
Equations
- A.ncoeff n = HVertexOperator.coeff A (-n - 1)
Instances For
In the literature, the n
th normalized coefficient of a vertex operator A
is written as
either Aₙ
or A(n)
.
Equations
- One or more equations did not get rendered due to their size.
Instances For
@[simp]
theorem
VertexOperator.coeff_eq_ncoeff
{R : Type u_1}
{V : Type u_2}
[CommRing R]
[AddCommGroup V]
[Module R V]
(A : VertexOperator R V)
(n : ℤ)
:
HVertexOperator.coeff A n = A.ncoeff (-n - 1)
@[simp]
theorem
VertexOperator.ncoeff_add
{R : Type u_1}
{V : Type u_2}
[CommRing R]
[AddCommGroup V]
[Module R V]
(A B : VertexOperator R V)
(n : ℤ)
:
@[simp]
theorem
VertexOperator.ncoeff_smul
{R : Type u_1}
{V : Type u_2}
[CommRing R]
[AddCommGroup V]
[Module R V]
(A : VertexOperator R V)
(r : R)
(n : ℤ)
:
theorem
VertexOperator.ncoeff_eq_zero_of_lt_order
{R : Type u_1}
{V : Type u_2}
[CommRing R]
[AddCommGroup V]
[Module R V]
(A : VertexOperator R V)
(n : ℤ)
(x : V)
(h : -n - 1 < ((HahnModule.of R).symm (A x)).order)
:
(A.ncoeff n) x = 0
theorem
VertexOperator.coeff_eq_zero_of_lt_order
{R : Type u_1}
{V : Type u_2}
[CommRing R]
[AddCommGroup V]
[Module R V]
(A : VertexOperator R V)
(n : ℤ)
(x : V)
(h : n < ((HahnModule.of R).symm (A x)).order)
:
(HVertexOperator.coeff A n) x = 0
noncomputable def
VertexOperator.of_coeff
{R : Type u_1}
{V : Type u_2}
[CommRing R]
[AddCommGroup V]
[Module R V]
(f : ℤ → Module.End R V)
(hf : ∀ (x : V), ∃ (n : ℤ), ∀ m < n, (f m) x = 0)
:
VertexOperator R V
Given an endomorphism-valued function on integers satisfying a pointwise bounded-pole condition, we produce a vertex operator.
Equations
Instances For
@[simp]
theorem
VertexOperator.of_coeff_apply_coeff
{R : Type u_1}
{V : Type u_2}
[CommRing R]
[AddCommGroup V]
[Module R V]
(f : ℤ → Module.End R V)
(hf : ∀ (x : V), ∃ (n : ℤ), ∀ m < n, (f m) x = 0)
(x : V)
(n : ℤ)
:
((HahnModule.of R).symm ((VertexOperator.of_coeff f hf) x)).coeff n = (f n) x
@[simp]
theorem
VertexOperator.ncoeff_of_coeff
{R : Type u_1}
{V : Type u_2}
[CommRing R]
[AddCommGroup V]
[Module R V]
(f : ℤ → Module.End R V)
(hf : ∀ (x : V), ∃ (n : ℤ), ∀ m < n, (f m) x = 0)
(n : ℤ)
:
(VertexOperator.of_coeff f hf).ncoeff n = f (-n - 1)