Documentation

Mathlib.Algebra.Star.RingQuot

The *-ring structure on suitable quotients of a *-ring. #

theorem RingQuot.Rel.star {R : Type u} [Semiring R] (r : RRProp) [StarRing R] (hr : ∀ (a b : R), r a br (star a) (star b)) ⦃a : R ⦃b : R (h : RingQuot.Rel r a b) :
theorem RingQuot.star'_quot {R : Type u} [Semiring R] (r : RRProp) [StarRing R] (hr : ∀ (a b : R), r a br (star a) (star b)) {a : R} :
RingQuot.star' r hr { toQuot := Quot.mk (RingQuot.Rel r) a } = { toQuot := Quot.mk (RingQuot.Rel r) (star a) }
def RingQuot.starRing {R : Type u} [Semiring R] [StarRing R] (r : RRProp) (hr : ∀ (a b : R), r a br (star a) (star b)) :

Transfer a star_ring instance through a quotient, if the quotient is invariant to star

Equations
Instances For