Order
ed instances for SubsemiringClass
and Subsemiring
. #
A subsemiring of an OrderedSemiring
is an OrderedSemiring
.
Equations
- SubsemiringClass.toOrderedSemiring s = Function.Injective.orderedSemiring Subtype.val ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯
A subsemiring of a StrictOrderedSemiring
is a StrictOrderedSemiring
.
Equations
- SubsemiringClass.toStrictOrderedSemiring s = Function.Injective.strictOrderedSemiring Subtype.val ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯
A subsemiring of an OrderedCommSemiring
is an OrderedCommSemiring
.
Equations
- SubsemiringClass.toOrderedCommSemiring s = Function.Injective.orderedCommSemiring Subtype.val ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯
A subsemiring of a StrictOrderedCommSemiring
is a StrictOrderedCommSemiring
.
Equations
- SubsemiringClass.toStrictOrderedCommSemiring s = Function.Injective.strictOrderedCommSemiring Subtype.val ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯
A subsemiring of a LinearOrderedSemiring
is a LinearOrderedSemiring
.
Equations
- SubsemiringClass.toLinearOrderedSemiring s = Function.Injective.linearOrderedSemiring Subtype.val ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯
A subsemiring of a LinearOrderedCommSemiring
is a LinearOrderedCommSemiring
.
Equations
- SubsemiringClass.toLinearOrderedCommSemiring s = Function.Injective.linearOrderedCommSemiring Subtype.val ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯
A subsemiring of an OrderedSemiring
is an OrderedSemiring
.
Equations
- s.toOrderedSemiring = Function.Injective.orderedSemiring Subtype.val ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯
A subsemiring of a StrictOrderedSemiring
is a StrictOrderedSemiring
.
Equations
- s.toStrictOrderedSemiring = Function.Injective.strictOrderedSemiring Subtype.val ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯
A subsemiring of an OrderedCommSemiring
is an OrderedCommSemiring
.
Equations
- s.toOrderedCommSemiring = Function.Injective.orderedCommSemiring Subtype.val ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯
A subsemiring of a StrictOrderedCommSemiring
is a StrictOrderedCommSemiring
.
Equations
- s.toStrictOrderedCommSemiring = Function.Injective.strictOrderedCommSemiring Subtype.val ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯
A subsemiring of a LinearOrderedSemiring
is a LinearOrderedSemiring
.
Equations
- s.toLinearOrderedSemiring = Function.Injective.linearOrderedSemiring Subtype.val ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯
A subsemiring of a LinearOrderedCommSemiring
is a LinearOrderedCommSemiring
.
Equations
- s.toLinearOrderedCommSemiring = Function.Injective.linearOrderedCommSemiring Subtype.val ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯
The set of nonnegative elements in an ordered semiring, as a subsemiring.
Equations
- Subsemiring.nonneg R = { carrier := Set.Ici 0, mul_mem' := ⋯, one_mem' := ⋯, add_mem' := ⋯, zero_mem' := ⋯ }