Identities #
This file contains some "named" commutative ring identities.
Brahmagupta-Fibonacci identity or Diophantus identity, see https://en.wikipedia.org/wiki/Brahmagupta%E2%80%93Fibonacci_identity.
This sign choice here corresponds to the signs obtained by multiplying two complex numbers.
theorem
sq_add_mul_sq_mul_sq_add_mul_sq
{R : Type u_1}
[CommRing R]
{x₁ : R}
{x₂ : R}
{y₁ : R}
{y₂ : R}
{n : R}
:
Brahmagupta's identity, see https://en.wikipedia.org/wiki/Brahmagupta%27s_identity
theorem
sum_four_sq_mul_sum_four_sq
{R : Type u_1}
[CommRing R]
{x₁ : R}
{x₂ : R}
{x₃ : R}
{x₄ : R}
{y₁ : R}
{y₂ : R}
{y₃ : R}
{y₄ : R}
:
Euler's four-square identity, see https://en.wikipedia.org/wiki/Euler%27s_four-square_identity.
This sign choice here corresponds to the signs obtained by multiplying two quaternions.
theorem
sum_eight_sq_mul_sum_eight_sq
{R : Type u_1}
[CommRing R]
{x₁ : R}
{x₂ : R}
{x₃ : R}
{x₄ : R}
{x₅ : R}
{x₆ : R}
{x₇ : R}
{x₈ : R}
{y₁ : R}
{y₂ : R}
{y₃ : R}
{y₄ : R}
{y₅ : R}
{y₆ : R}
{y₇ : R}
{y₈ : R}
:
(x₁ ^ 2 + x₂ ^ 2 + x₃ ^ 2 + x₄ ^ 2 + x₅ ^ 2 + x₆ ^ 2 + x₇ ^ 2 + x₈ ^ 2) * (y₁ ^ 2 + y₂ ^ 2 + y₃ ^ 2 + y₄ ^ 2 + y₅ ^ 2 + y₆ ^ 2 + y₇ ^ 2 + y₈ ^ 2) = (x₁ * y₁ - x₂ * y₂ - x₃ * y₃ - x₄ * y₄ - x₅ * y₅ - x₆ * y₆ - x₇ * y₇ - x₈ * y₈) ^ 2 + (x₁ * y₂ + x₂ * y₁ + x₃ * y₄ - x₄ * y₃ + x₅ * y₆ - x₆ * y₅ - x₇ * y₈ + x₈ * y₇) ^ 2 + (x₁ * y₃ - x₂ * y₄ + x₃ * y₁ + x₄ * y₂ + x₅ * y₇ + x₆ * y₈ - x₇ * y₅ - x₈ * y₆) ^ 2 + (x₁ * y₄ + x₂ * y₃ - x₃ * y₂ + x₄ * y₁ + x₅ * y₈ - x₆ * y₇ + x₇ * y₆ - x₈ * y₅) ^ 2 + (x₁ * y₅ - x₂ * y₆ - x₃ * y₇ - x₄ * y₈ + x₅ * y₁ + x₆ * y₂ + x₇ * y₃ + x₈ * y₄) ^ 2 + (x₁ * y₆ + x₂ * y₅ - x₃ * y₈ + x₄ * y₇ - x₅ * y₂ + x₆ * y₁ - x₇ * y₄ + x₈ * y₃) ^ 2 + (x₁ * y₇ + x₂ * y₈ + x₃ * y₅ - x₄ * y₆ - x₅ * y₃ + x₆ * y₄ + x₇ * y₁ - x₈ * y₂) ^ 2 + (x₁ * y₈ - x₂ * y₇ + x₃ * y₆ + x₄ * y₅ - x₅ * y₄ - x₆ * y₃ + x₇ * y₂ + x₈ * y₁) ^ 2
Degen's eight squares identity, see https://en.wikipedia.org/wiki/Degen%27s_eight-square_identity.
This sign choice here corresponds to the signs obtained by multiplying two octonions.