Polynomial modules in finite dimensions #
This file is a place to collect results about the R[X]
-module structure induced on an R
-module
by an R
-linear endomorphism, which require the concept of finite-dimensionality.
Main results: #
Module.AEval.isTorsion_of_finiteDimensional
: if a vector spaceM
with coefficients in a fieldK
carries a naturalK
-linear endomorphism which belongs to a finite-dimensional algebra overK
, then the inducedK[X]
-module structure onM
is pure torsion.
theorem
Module.AEval.isTorsion_of_aeval_eq_zero
{R : Type u_1}
{M : Type u_3}
{A : Type u_4}
{a : A}
[CommSemiring R]
[NoZeroDivisors R]
[Semiring A]
[Algebra R A]
[AddCommMonoid M]
[Module A M]
[Module R M]
[IsScalarTower R A M]
{p : Polynomial R}
(h : (Polynomial.aeval a) p = 0)
(h' : p ≠ 0)
:
Module.IsTorsion (Polynomial R) (Module.AEval R M a)
theorem
Module.AEval.isTorsion_of_finiteDimensional
(K : Type u_2)
(M : Type u_3)
{A : Type u_4}
(a : A)
[Field K]
[Ring A]
[Algebra K A]
[AddCommGroup M]
[Module A M]
[Module K M]
[IsScalarTower K A M]
[FiniteDimensional K A]
:
Module.IsTorsion (Polynomial K) (Module.AEval K M a)