Hasse derivative of polynomials #
The k
th Hasse derivative of a polynomial ∑ a_i X^i
is ∑ (i.choose k) a_i X^(i-k)
.
It is a variant of the usual derivative, and satisfies k! * (hasseDeriv k f) = derivative^[k] f
.
The main benefit is that is gives an atomic way of talking about expressions such as
(derivative^[k] f).eval r / k!
, that occur in Taylor expansions, for example.
Main declarations #
In the following, we write D k
for the k
-th Hasse derivative hasse_deriv k
.
Polynomial.hasseDeriv
: thek
-th Hasse derivative of a polynomialPolynomial.hasseDeriv_zero
: the0
th Hasse derivative is the identityPolynomial.hasseDeriv_one
: the1
st Hasse derivative is the usual derivativePolynomial.factorial_smul_hasseDeriv
: the identityk! • (D k f) = derivative^[k] f
Polynomial.hasseDeriv_comp
: the identity(D k).comp (D l) = (k+l).choose k • D (k+l)
Polynomial.hasseDeriv_mul
: the "Leibniz rule"D k (f * g) = ∑ ij ∈ antidiagonal k, D ij.1 f * D ij.2 g
For the identity principle, see Polynomial.eq_zero_of_hasseDeriv_eq_zero
in Data/Polynomial/Taylor.lean
.
Reference #
The k
th Hasse derivative of a polynomial ∑ a_i X^i
is ∑ (i.choose k) a_i X^(i-k)
.
It satisfies k! * (hasse_deriv k f) = derivative^[k] f
.
Equations
- Polynomial.hasseDeriv k = Polynomial.lsum fun (i : ℕ) => Polynomial.monomial (i - k) ∘ₗ DistribMulAction.toLinearMap R R (i.choose k)
Instances For
theorem
Polynomial.hasseDeriv_apply
{R : Type u_1}
[Semiring R]
(k : ℕ)
(f : Polynomial R)
:
(Polynomial.hasseDeriv k) f = f.sum fun (i : ℕ) (r : R) => (Polynomial.monomial (i - k)) (↑(i.choose k) * r)
theorem
Polynomial.hasseDeriv_coeff
{R : Type u_1}
[Semiring R]
(k : ℕ)
(f : Polynomial R)
(n : ℕ)
:
((Polynomial.hasseDeriv k) f).coeff n = ↑((n + k).choose k) * f.coeff (n + k)
theorem
Polynomial.hasseDeriv_zero'
{R : Type u_1}
[Semiring R]
(f : Polynomial R)
:
(Polynomial.hasseDeriv 0) f = f
@[simp]
theorem
Polynomial.hasseDeriv_eq_zero_of_lt_natDegree
{R : Type u_1}
[Semiring R]
(p : Polynomial R)
(n : ℕ)
(h : p.natDegree < n)
:
(Polynomial.hasseDeriv n) p = 0
theorem
Polynomial.hasseDeriv_one'
{R : Type u_1}
[Semiring R]
(f : Polynomial R)
:
(Polynomial.hasseDeriv 1) f = Polynomial.derivative f
@[simp]
@[simp]
theorem
Polynomial.hasseDeriv_monomial
{R : Type u_1}
[Semiring R]
(k n : ℕ)
(r : R)
:
(Polynomial.hasseDeriv k) ((Polynomial.monomial n) r) = (Polynomial.monomial (n - k)) (↑(n.choose k) * r)
theorem
Polynomial.hasseDeriv_C
{R : Type u_1}
[Semiring R]
(k : ℕ)
(r : R)
(hk : 0 < k)
:
(Polynomial.hasseDeriv k) (Polynomial.C r) = 0
theorem
Polynomial.hasseDeriv_apply_one
{R : Type u_1}
[Semiring R]
(k : ℕ)
(hk : 0 < k)
:
(Polynomial.hasseDeriv k) 1 = 0
theorem
Polynomial.factorial_smul_hasseDeriv
{R : Type u_1}
[Semiring R]
(k : ℕ)
:
⇑(k.factorial • Polynomial.hasseDeriv k) = (⇑Polynomial.derivative)^[k]
theorem
Polynomial.hasseDeriv_comp
{R : Type u_1}
[Semiring R]
(k l : ℕ)
:
Polynomial.hasseDeriv k ∘ₗ Polynomial.hasseDeriv l = (k + l).choose k • Polynomial.hasseDeriv (k + l)
theorem
Polynomial.natDegree_hasseDeriv_le
{R : Type u_1}
[Semiring R]
(p : Polynomial R)
(n : ℕ)
:
((Polynomial.hasseDeriv n) p).natDegree ≤ p.natDegree - n
theorem
Polynomial.natDegree_hasseDeriv
{R : Type u_1}
[Semiring R]
[NoZeroSMulDivisors ℕ R]
(p : Polynomial R)
(n : ℕ)
:
((Polynomial.hasseDeriv n) p).natDegree = p.natDegree - n
theorem
Polynomial.hasseDeriv_mul
{R : Type u_1}
[Semiring R]
(k : ℕ)
(f g : Polynomial R)
:
(Polynomial.hasseDeriv k) (f * g) = ∑ ij ∈ Finset.antidiagonal k, (Polynomial.hasseDeriv ij.1) f * (Polynomial.hasseDeriv ij.2) g