Documentation
Mathlib
.
Algebra
.
Order
.
Ring
.
Finset
Search
Google site search
return to top
source
Imports
Init
Mathlib.Data.Finset.Lattice
Mathlib.Algebra.Order.Ring.Defs
Imported by
Finset
.
sup_mul_le_mul_sup_of_nonneg
Finset
.
mul_inf_le_inf_mul_of_nonneg
Finset
.
sup'_mul_le_mul_sup'_of_nonneg
Finset
.
inf'_mul_le_mul_inf'_of_nonneg
Algebraic properties of finitary supremum
#
source
theorem
Finset
.
sup_mul_le_mul_sup_of_nonneg
{ι :
Type
u_1}
{R :
Type
u_2}
[
LinearOrderedSemiring
R
]
{a :
ι
→
R
}
{b :
ι
→
R
}
[
OrderBot
R
]
(s :
Finset
ι
)
(ha :
∀
i
∈
s
,
0
≤
a
i
)
(hb :
∀
i
∈
s
,
0
≤
b
i
)
:
s
.sup
(
a
*
b
)
≤
s
.sup
a
*
s
.sup
b
source
theorem
Finset
.
mul_inf_le_inf_mul_of_nonneg
{ι :
Type
u_1}
{R :
Type
u_2}
[
LinearOrderedSemiring
R
]
{a :
ι
→
R
}
{b :
ι
→
R
}
[
OrderTop
R
]
(s :
Finset
ι
)
(ha :
∀
i
∈
s
,
0
≤
a
i
)
(hb :
∀
i
∈
s
,
0
≤
b
i
)
:
s
.inf
a
*
s
.inf
b
≤
s
.inf
(
a
*
b
)
source
theorem
Finset
.
sup'_mul_le_mul_sup'_of_nonneg
{ι :
Type
u_1}
{R :
Type
u_2}
[
LinearOrderedSemiring
R
]
{a :
ι
→
R
}
{b :
ι
→
R
}
(s :
Finset
ι
)
(H :
s
.Nonempty
)
(ha :
∀
i
∈
s
,
0
≤
a
i
)
(hb :
∀
i
∈
s
,
0
≤
b
i
)
:
s
.sup'
H
(
a
*
b
)
≤
s
.sup'
H
a
*
s
.sup'
H
b
source
theorem
Finset
.
inf'_mul_le_mul_inf'_of_nonneg
{ι :
Type
u_1}
{R :
Type
u_2}
[
LinearOrderedSemiring
R
]
{a :
ι
→
R
}
{b :
ι
→
R
}
(s :
Finset
ι
)
(H :
s
.Nonempty
)
(ha :
∀
i
∈
s
,
0
≤
a
i
)
(hb :
∀
i
∈
s
,
0
≤
b
i
)
:
s
.inf'
H
a
*
s
.inf'
H
b
≤
s
.inf'
H
(
a
*
b
)