Documentation

Mathlib.Algebra.Order.Module.Algebra

Ordered algebras #

This file proves properties of algebras where both rings are ordered compatibly.

TODO #

positivity extension for algebraMap

theorem algebraMap_mono {α : Type u_1} (β : Type u_2) [OrderedCommSemiring α] [OrderedSemiring β] [Algebra α β] [SMulPosMono α β] :
Monotone (algebraMap α β)
theorem GCongr.algebraMap_le_algebraMap {α : Type u_1} (β : Type u_2) [OrderedCommSemiring α] [OrderedSemiring β] [Algebra α β] [SMulPosMono α β] {a₁ : α} {a₂ : α} (ha : a₁ a₂) :
(algebraMap α β) a₁ (algebraMap α β) a₂

A version of algebraMap_mono for use by gcongr since it currently does not preprocess Monotone conclusions.

theorem algebraMap_nonneg {α : Type u_1} (β : Type u_2) [OrderedCommSemiring α] [OrderedSemiring β] [Algebra α β] [SMulPosMono α β] {a : α} (ha : 0 a) :
0 (algebraMap α β) a
@[simp]
theorem algebraMap_le_algebraMap {α : Type u_1} {β : Type u_2} [OrderedCommSemiring α] [StrictOrderedSemiring β] [Algebra α β] [SMulPosMono α β] [SMulPosReflectLE α β] {a₁ : α} {a₂ : α} :
(algebraMap α β) a₁ (algebraMap α β) a₂ a₁ a₂
theorem GCongr.algebraMap_lt_algebraMap {α : Type u_1} (β : Type u_2) [OrderedCommSemiring α] [StrictOrderedSemiring β] [Algebra α β] [SMulPosStrictMono α β] {a₁ : α} {a₂ : α} (ha : a₁ < a₂) :
(algebraMap α β) a₁ < (algebraMap α β) a₂

A version of algebraMap_strictMono for use by gcongr since it currently does not preprocess Monotone conclusions.

theorem algebraMap_pos {α : Type u_1} (β : Type u_2) [OrderedCommSemiring α] [StrictOrderedSemiring β] [Algebra α β] [SMulPosStrictMono α β] {a : α} (ha : 0 < a) :
0 < (algebraMap α β) a
@[simp]
theorem algebraMap_lt_algebraMap {α : Type u_1} {β : Type u_2} [OrderedCommSemiring α] [StrictOrderedSemiring β] [Algebra α β] [SMulPosStrictMono α β] {a₁ : α} {a₂ : α} [SMulPosReflectLT α β] :
(algebraMap α β) a₁ < (algebraMap α β) a₂ a₁ < a₂