Documentation

Mathlib.Algebra.Order.Interval.Set.Instances

Algebraic instances for unit intervals #

For suitably structured underlying type α, we exhibit the structure of the unit intervals (Set.Icc, Set.Ioc, Set.Ioc, and Set.Ioo) from 0 to 1. Note: Instances for the interval Ici 0 are dealt with in Algebra/Order/Nonneg.lean.

Main definitions #

The strongest typeclass provided on each interval is:

TODO #

Instances for ↥(Set.Icc 0 1) #

instance Set.Icc.zero {R : Type u_1} [Semiring R] [PartialOrder R] [IsOrderedRing R] :
Zero (Icc 0 1)
Equations
instance Set.Icc.one {R : Type u_1} [Semiring R] [PartialOrder R] [IsOrderedRing R] :
One (Icc 0 1)
Equations
@[simp]
theorem Set.Icc.coe_zero {R : Type u_1} [Semiring R] [PartialOrder R] [IsOrderedRing R] :
0 = 0
@[simp]
theorem Set.Icc.coe_one {R : Type u_1} [Semiring R] [PartialOrder R] [IsOrderedRing R] :
1 = 1
@[simp]
theorem Set.Icc.mk_zero {R : Type u_1} [Semiring R] [PartialOrder R] [IsOrderedRing R] (h : 0 Icc 0 1) :
0, h = 0
@[simp]
theorem Set.Icc.mk_one {R : Type u_1} [Semiring R] [PartialOrder R] [IsOrderedRing R] (h : 1 Icc 0 1) :
1, h = 1
@[simp]
theorem Set.Icc.coe_eq_zero {R : Type u_1} [Semiring R] [PartialOrder R] [IsOrderedRing R] {x : (Icc 0 1)} :
x = 0 x = 0
theorem Set.Icc.coe_ne_zero {R : Type u_1} [Semiring R] [PartialOrder R] [IsOrderedRing R] {x : (Icc 0 1)} :
x 0 x 0
@[simp]
theorem Set.Icc.coe_eq_one {R : Type u_1} [Semiring R] [PartialOrder R] [IsOrderedRing R] {x : (Icc 0 1)} :
x = 1 x = 1
theorem Set.Icc.coe_ne_one {R : Type u_1} [Semiring R] [PartialOrder R] [IsOrderedRing R] {x : (Icc 0 1)} :
x 1 x 1
theorem Set.Icc.coe_nonneg {R : Type u_1} [Semiring R] [PartialOrder R] (x : (Icc 0 1)) :
0 x
theorem Set.Icc.coe_le_one {R : Type u_1} [Semiring R] [PartialOrder R] (x : (Icc 0 1)) :
x 1
theorem Set.Icc.nonneg {R : Type u_1} [Semiring R] [PartialOrder R] [IsOrderedRing R] {t : (Icc 0 1)} :
0 t

like coe_nonneg, but with the inequality in Icc (0:R) 1.

theorem Set.Icc.le_one {R : Type u_1} [Semiring R] [PartialOrder R] [IsOrderedRing R] {t : (Icc 0 1)} :
t 1

like coe_le_one, but with the inequality in Icc (0:R) 1.

instance Set.Icc.mul {R : Type u_1} [Semiring R] [PartialOrder R] [IsOrderedRing R] :
Mul (Icc 0 1)
Equations
instance Set.Icc.pow {R : Type u_1} [Semiring R] [PartialOrder R] [IsOrderedRing R] :
Pow (Icc 0 1)
Equations
@[simp]
theorem Set.Icc.coe_mul {R : Type u_1} [Semiring R] [PartialOrder R] [IsOrderedRing R] (x y : (Icc 0 1)) :
↑(x * y) = x * y
@[simp]
theorem Set.Icc.coe_pow {R : Type u_1} [Semiring R] [PartialOrder R] [IsOrderedRing R] (x : (Icc 0 1)) (n : ) :
↑(x ^ n) = x ^ n
theorem Set.Icc.mul_le_left {R : Type u_1} [Semiring R] [PartialOrder R] [IsOrderedRing R] {x y : (Icc 0 1)} :
x * y x
theorem Set.Icc.mul_le_right {R : Type u_1} [Semiring R] [PartialOrder R] [IsOrderedRing R] {x y : (Icc 0 1)} :
x * y y
Equations
  • One or more equations did not get rendered due to their size.
Equations
Equations
Equations
theorem Set.Icc.one_sub_mem {β : Type u_2} [Ring β] [PartialOrder β] [IsOrderedRing β] {t : β} (ht : t Icc 0 1) :
1 - t Icc 0 1
theorem Set.Icc.mem_iff_one_sub_mem {β : Type u_2} [Ring β] [PartialOrder β] [IsOrderedRing β] {t : β} :
t Icc 0 1 1 - t Icc 0 1
theorem Set.Icc.one_sub_nonneg {β : Type u_2} [Ring β] [PartialOrder β] [IsOrderedRing β] (x : (Icc 0 1)) :
0 1 - x
theorem Set.Icc.one_sub_le_one {β : Type u_2} [Ring β] [PartialOrder β] [IsOrderedRing β] (x : (Icc 0 1)) :
1 - x 1

Instances for ↥(Set.Ico 0 1) #

instance Set.Ico.zero {R : Type u_1} [Semiring R] [PartialOrder R] [IsOrderedRing R] [Nontrivial R] :
Zero (Ico 0 1)
Equations
@[simp]
theorem Set.Ico.coe_zero {R : Type u_1} [Semiring R] [PartialOrder R] [IsOrderedRing R] [Nontrivial R] :
0 = 0
@[simp]
theorem Set.Ico.mk_zero {R : Type u_1} [Semiring R] [PartialOrder R] [IsOrderedRing R] [Nontrivial R] (h : 0 Ico 0 1) :
0, h = 0
@[simp]
theorem Set.Ico.coe_eq_zero {R : Type u_1} [Semiring R] [PartialOrder R] [IsOrderedRing R] [Nontrivial R] {x : (Ico 0 1)} :
x = 0 x = 0
theorem Set.Ico.coe_ne_zero {R : Type u_1} [Semiring R] [PartialOrder R] [IsOrderedRing R] [Nontrivial R] {x : (Ico 0 1)} :
x 0 x 0
theorem Set.Ico.coe_nonneg {R : Type u_1} [Semiring R] [PartialOrder R] (x : (Ico 0 1)) :
0 x
theorem Set.Ico.coe_lt_one {R : Type u_1} [Semiring R] [PartialOrder R] (x : (Ico 0 1)) :
x < 1
theorem Set.Ico.nonneg {R : Type u_1} [Semiring R] [PartialOrder R] [IsOrderedRing R] [Nontrivial R] {t : (Ico 0 1)} :
0 t

like coe_nonneg, but with the inequality in Ico (0:R) 1.

instance Set.Ico.mul {R : Type u_1} [Semiring R] [PartialOrder R] [IsOrderedRing R] :
Mul (Ico 0 1)
Equations
@[simp]
theorem Set.Ico.coe_mul {R : Type u_1} [Semiring R] [PartialOrder R] [IsOrderedRing R] (x y : (Ico 0 1)) :
↑(x * y) = x * y
instance Set.Ico.semigroup {R : Type u_1} [Semiring R] [PartialOrder R] [IsOrderedRing R] :
Semigroup (Ico 0 1)
Equations
Equations

Instances for ↥(Set.Ioc 0 1) #

instance Set.Ioc.one {R : Type u_1} [Semiring R] [PartialOrder R] [IsStrictOrderedRing R] :
One (Ioc 0 1)
Equations
@[simp]
theorem Set.Ioc.coe_one {R : Type u_1} [Semiring R] [PartialOrder R] [IsStrictOrderedRing R] :
1 = 1
@[simp]
theorem Set.Ioc.mk_one {R : Type u_1} [Semiring R] [PartialOrder R] [IsStrictOrderedRing R] (h : 1 Ioc 0 1) :
1, h = 1
@[simp]
theorem Set.Ioc.coe_eq_one {R : Type u_1} [Semiring R] [PartialOrder R] [IsStrictOrderedRing R] {x : (Ioc 0 1)} :
x = 1 x = 1
theorem Set.Ioc.coe_ne_one {R : Type u_1} [Semiring R] [PartialOrder R] [IsStrictOrderedRing R] {x : (Ioc 0 1)} :
x 1 x 1
theorem Set.Ioc.coe_pos {R : Type u_1} [Semiring R] [PartialOrder R] (x : (Ioc 0 1)) :
0 < x
theorem Set.Ioc.coe_le_one {R : Type u_1} [Semiring R] [PartialOrder R] (x : (Ioc 0 1)) :
x 1
theorem Set.Ioc.le_one {R : Type u_1} [Semiring R] [PartialOrder R] [IsStrictOrderedRing R] {t : (Ioc 0 1)} :
t 1

like coe_le_one, but with the inequality in Ioc (0:R) 1.

instance Set.Ioc.mul {R : Type u_1} [Semiring R] [PartialOrder R] [IsStrictOrderedRing R] :
Mul (Ioc 0 1)
Equations
instance Set.Ioc.pow {R : Type u_1} [Semiring R] [PartialOrder R] [IsStrictOrderedRing R] :
Pow (Ioc 0 1)
Equations
@[simp]
theorem Set.Ioc.coe_mul {R : Type u_1} [Semiring R] [PartialOrder R] [IsStrictOrderedRing R] (x y : (Ioc 0 1)) :
↑(x * y) = x * y
@[simp]
theorem Set.Ioc.coe_pow {R : Type u_1} [Semiring R] [PartialOrder R] [IsStrictOrderedRing R] (x : (Ioc 0 1)) (n : ) :
↑(x ^ n) = x ^ n
Equations
instance Set.Ioc.monoid {R : Type u_1} [Semiring R] [PartialOrder R] [IsStrictOrderedRing R] :
Monoid (Ioc 0 1)
Equations
  • One or more equations did not get rendered due to their size.
Equations
Equations
Equations
Equations

Instances for ↥(Set.Ioo 0 1) #

theorem Set.Ioo.pos {R : Type u_1} [Semiring R] [PartialOrder R] (x : (Ioo 0 1)) :
0 < x
theorem Set.Ioo.lt_one {R : Type u_1} [Semiring R] [PartialOrder R] (x : (Ioo 0 1)) :
x < 1
instance Set.Ioo.mul {R : Type u_1} [Semiring R] [PartialOrder R] [IsStrictOrderedRing R] :
Mul (Ioo 0 1)
Equations
@[simp]
theorem Set.Ioo.coe_mul {R : Type u_1} [Semiring R] [PartialOrder R] [IsStrictOrderedRing R] (x y : (Ioo 0 1)) :
↑(x * y) = x * y
Equations
Equations
theorem Set.Ioo.one_sub_mem {β : Type u_2} [Ring β] [PartialOrder β] [IsOrderedRing β] {t : β} (ht : t Ioo 0 1) :
1 - t Ioo 0 1
theorem Set.Ioo.mem_iff_one_sub_mem {β : Type u_2} [Ring β] [PartialOrder β] [IsOrderedRing β] {t : β} :
t Ioo 0 1 1 - t Ioo 0 1
theorem Set.Ioo.one_minus_pos {β : Type u_2} [Ring β] [PartialOrder β] [IsOrderedRing β] (x : (Ioo 0 1)) :
0 < 1 - x
theorem Set.Ioo.one_minus_lt_one {β : Type u_2} [Ring β] [PartialOrder β] [IsOrderedRing β] (x : (Ioo 0 1)) :
1 - x < 1