Infima/suprema in ordered monoids and groups #
In this file we prove a few facts like “The infimum of -s
is -
the supremum of s
”.
TODO #
sSup (s • t) = sSup s • sSup t
and sInf (s • t) = sInf s • sInf t
hold as well but
CovariantClass
is currently not polymorphic enough to state it.
@[simp]
@[simp]
theorem
csSup_inv
{M : Type u_3}
[ConditionallyCompleteLattice M]
[Group M]
[MulLeftMono M]
[MulRightMono M]
{s : Set M}
(hs₀ : s.Nonempty)
(hs₁ : BddBelow s)
:
theorem
csSup_neg
{M : Type u_3}
[ConditionallyCompleteLattice M]
[AddGroup M]
[AddLeftMono M]
[AddRightMono M]
{s : Set M}
(hs₀ : s.Nonempty)
(hs₁ : BddBelow s)
:
theorem
csInf_inv
{M : Type u_3}
[ConditionallyCompleteLattice M]
[Group M]
[MulLeftMono M]
[MulRightMono M]
{s : Set M}
(hs₀ : s.Nonempty)
(hs₁ : BddAbove s)
:
theorem
csInf_neg
{M : Type u_3}
[ConditionallyCompleteLattice M]
[AddGroup M]
[AddLeftMono M]
[AddRightMono M]
{s : Set M}
(hs₀ : s.Nonempty)
(hs₁ : BddAbove s)
:
theorem
sSup_inv
{M : Type u_3}
[CompleteLattice M]
[Group M]
[MulLeftMono M]
[MulRightMono M]
(s : Set M)
:
theorem
sSup_neg
{M : Type u_3}
[CompleteLattice M]
[AddGroup M]
[AddLeftMono M]
[AddRightMono M]
(s : Set M)
:
theorem
sInf_inv
{M : Type u_3}
[CompleteLattice M]
[Group M]
[MulLeftMono M]
[MulRightMono M]
(s : Set M)
:
theorem
sInf_neg
{M : Type u_3}
[CompleteLattice M]
[AddGroup M]
[AddLeftMono M]
[AddRightMono M]
(s : Set M)
:
theorem
sSup_mul
{M : Type u_3}
[CompleteLattice M]
[Group M]
[MulLeftMono M]
[MulRightMono M]
(s : Set M)
(t : Set M)
:
theorem
sSup_add
{M : Type u_3}
[CompleteLattice M]
[AddGroup M]
[AddLeftMono M]
[AddRightMono M]
(s : Set M)
(t : Set M)
:
theorem
sInf_mul
{M : Type u_3}
[CompleteLattice M]
[Group M]
[MulLeftMono M]
[MulRightMono M]
(s : Set M)
(t : Set M)
:
theorem
sInf_add
{M : Type u_3}
[CompleteLattice M]
[AddGroup M]
[AddLeftMono M]
[AddRightMono M]
(s : Set M)
(t : Set M)
:
theorem
sSup_div
{M : Type u_3}
[CompleteLattice M]
[Group M]
[MulLeftMono M]
[MulRightMono M]
(s : Set M)
(t : Set M)
:
theorem
sSup_sub
{M : Type u_3}
[CompleteLattice M]
[AddGroup M]
[AddLeftMono M]
[AddRightMono M]
(s : Set M)
(t : Set M)
:
theorem
sInf_div
{M : Type u_3}
[CompleteLattice M]
[Group M]
[MulLeftMono M]
[MulRightMono M]
(s : Set M)
(t : Set M)
:
theorem
sInf_sub
{M : Type u_3}
[CompleteLattice M]
[AddGroup M]
[AddLeftMono M]
[AddRightMono M]
(s : Set M)
(t : Set M)
: