Antidiagonal of finitely supported functions as finsets #
This file defines the finset of finitely functions summing to a specific value on a finset. Such finsets should be thought of as the "antidiagonals" in the space of finitely supported functions.
Precisely, for a commutative monoid μ
with antidiagonals (see Finset.HasAntidiagonal
),
Finset.finsuppAntidiag s n
is the finset of all finitely supported functions f : ι →₀ μ
with
support contained in s
and such that the sum of its values equals n : μ
.
We define it using Finset.piAntidiag s n
, the corresponding antidiagonal in ι → μ
.
Main declarations #
Finset.finsuppAntidiag s n
: Finset of all finitely supported functionsf : ι →₀ μ
with support contained ins
and such that the sum of its values equalsn : μ
.
def
Finset.finsuppAntidiag
{ι : Type u_1}
{μ : Type u_2}
[DecidableEq ι]
[AddCommMonoid μ]
[Finset.HasAntidiagonal μ]
[DecidableEq μ]
(s : Finset ι)
(n : μ)
:
The finset of functions ι →₀ μ
with support contained in s
and sum equal to n
.
Equations
- One or more equations did not get rendered due to their size.
Instances For
@[simp]
theorem
Finset.mem_finsuppAntidiag
{ι : Type u_1}
{μ : Type u_2}
[DecidableEq ι]
[AddCommMonoid μ]
[Finset.HasAntidiagonal μ]
[DecidableEq μ]
{s : Finset ι}
{n : μ}
{f : ι →₀ μ}
:
theorem
Finset.mem_finsuppAntidiag'
{ι : Type u_1}
{μ : Type u_2}
[DecidableEq ι]
[AddCommMonoid μ]
[Finset.HasAntidiagonal μ]
[DecidableEq μ]
{s : Finset ι}
{n : μ}
{f : ι →₀ μ}
:
@[simp]
theorem
Finset.finsuppAntidiag_empty_zero
{ι : Type u_1}
{μ : Type u_2}
[DecidableEq ι]
[AddCommMonoid μ]
[Finset.HasAntidiagonal μ]
[DecidableEq μ]
:
@[simp]
theorem
Finset.finsuppAntidiag_empty_of_ne_zero
{ι : Type u_1}
{μ : Type u_2}
[DecidableEq ι]
[AddCommMonoid μ]
[Finset.HasAntidiagonal μ]
[DecidableEq μ]
{n : μ}
(hn : n ≠ 0)
:
theorem
Finset.finsuppAntidiag_empty
{ι : Type u_1}
{μ : Type u_2}
[DecidableEq ι]
[AddCommMonoid μ]
[Finset.HasAntidiagonal μ]
[DecidableEq μ]
(n : μ)
:
theorem
Finset.mem_finsuppAntidiag_insert
{ι : Type u_1}
{μ : Type u_2}
[DecidableEq ι]
[AddCommMonoid μ]
[Finset.HasAntidiagonal μ]
[DecidableEq μ]
{a : ι}
{s : Finset ι}
(h : a ∉ s)
(n : μ)
{f : ι →₀ μ}
:
theorem
Finset.finsuppAntidiag_insert
{ι : Type u_1}
{μ : Type u_2}
[DecidableEq ι]
[AddCommMonoid μ]
[Finset.HasAntidiagonal μ]
[DecidableEq μ]
{a : ι}
{s : Finset ι}
(h : a ∉ s)
(n : μ)
:
(insert a s).finsuppAntidiag n = (Finset.antidiagonal n).biUnion fun (p : μ × μ) =>
Finset.map { toFun := fun (f : { x : ι →₀ μ // x ∈ s.finsuppAntidiag p.2 }) => (↑f).update a p.1, inj' := ⋯ }
(s.finsuppAntidiag p.2).attach
theorem
Finset.mapRange_finsuppAntidiag_subset
{ι : Type u_1}
{μ : Type u_2}
{μ' : Type u_3}
[DecidableEq ι]
[AddCommMonoid μ]
[Finset.HasAntidiagonal μ]
[DecidableEq μ]
[AddCommMonoid μ']
[Finset.HasAntidiagonal μ']
[DecidableEq μ']
{e : μ ≃+ μ'}
{s : Finset ι}
{n : μ}
:
Finset.map (Finsupp.mapRange.addEquiv e).toEmbedding (s.finsuppAntidiag n) ⊆ s.finsuppAntidiag (e n)
theorem
Finset.mapRange_finsuppAntidiag_eq
{ι : Type u_1}
{μ : Type u_2}
{μ' : Type u_3}
[DecidableEq ι]
[AddCommMonoid μ]
[Finset.HasAntidiagonal μ]
[DecidableEq μ]
[AddCommMonoid μ']
[Finset.HasAntidiagonal μ']
[DecidableEq μ']
{e : μ ≃+ μ'}
{s : Finset ι}
{n : μ}
:
Finset.map (Finsupp.mapRange.addEquiv e).toEmbedding (s.finsuppAntidiag n) = s.finsuppAntidiag (e n)
@[simp]
theorem
Finset.finsuppAntidiag_zero
{ι : Type u_1}
{μ : Type u_2}
[DecidableEq ι]
[DecidableEq μ]
[OrderedAddCommMonoid μ]
[CanonicallyOrderedAdd μ]
[Finset.HasAntidiagonal μ]
(s : Finset ι)
:
s.finsuppAntidiag 0 = {0}