Equivalence of real-valued absolute values #
Two absolute values v₁, v₂ : AbsoluteValue R ℝ
are equivalent if there exists a
positive real number c
such that v₁ x ^ c = v₂ x
for all x : R
.
Two absolute values f, g
on R
with values in ℝ
are equivalent if there exists
a positive real constant c
such that for all x : R
, (f x)^c = g x
.
Instances For
Equivalence of absolute values is reflexive.
theorem
AbsoluteValue.isEquiv_symm
{R : Type u_1}
[Semiring R]
{f g : AbsoluteValue R ℝ}
(hfg : f.IsEquiv g)
:
g.IsEquiv f
Equivalence of absolute values is symmetric.
theorem
AbsoluteValue.isEquiv_trans
{R : Type u_1}
[Semiring R]
{f g k : AbsoluteValue R ℝ}
(hfg : f.IsEquiv g)
(hgk : g.IsEquiv k)
:
f.IsEquiv k
Equivalence of absolute values is transitive.
Equations
- AbsoluteValue.instSetoidReal = { r := AbsoluteValue.IsEquiv, iseqv := ⋯ }
@[simp]
theorem
AbsoluteValue.eq_trivial_of_isEquiv_trivial
{R : Type u_1}
[Semiring R]
[DecidablePred fun (x : R) => x = 0]
[NoZeroDivisors R]
(f : AbsoluteValue R ℝ)
:
An absolute value is equivalent to the trivial iff it is trivial itself.