Some lemmas relating polynomials and multivariable polynomials. #
theorem
MvPolynomial.polynomial_eval_eval₂
{R : Type u_1}
{S : Type u_2}
{σ : Type u_3}
[CommSemiring R]
[CommSemiring S]
{x : S}
(f : R →+* Polynomial S)
(g : σ → Polynomial S)
(p : MvPolynomial σ R)
:
Polynomial.eval x (MvPolynomial.eval₂ f g p) = MvPolynomial.eval₂ ((Polynomial.evalRingHom x).comp f) (fun (s : σ) => Polynomial.eval x (g s)) p
theorem
MvPolynomial.eval_polynomial_eval_finSuccEquiv
{R : Type u_1}
{n : ℕ}
{x : Fin n → R}
[CommSemiring R]
(f : MvPolynomial (Fin (n + 1)) R)
(q : MvPolynomial (Fin n) R)
:
(MvPolynomial.eval x) (Polynomial.eval q ((MvPolynomial.finSuccEquiv R n) f)) = (MvPolynomial.eval fun (i : Fin (n + 1)) => Fin.cases ((MvPolynomial.eval x) q) x i) f