Documentation

Mathlib.Algebra.Module.Presentation.Tautological

The tautological presentation of a module #

Given an A-module M, we provide its tautological presentation:

inductive Module.Presentation.tautological.R (A : Type u) (M : Type v) :
Type (max u v)

The type which parametrizes the tautological relations in an A-module M.

Instances For

    The system of equations corresponding to the tautological presentation of an A-module.

    Equations
    • One or more equations did not get rendered due to their size.
    Instances For

      Solutions of tautologicalRelations A M in an A-module N identify to M →ₗ[A] N.

      Equations
      • One or more equations did not get rendered due to their size.
      Instances For

        The obvious solution of tautologicalRelations A M in the module M.

        Equations
        Instances For

          Any A-module admits a tautological presentation by generators and relations.

          Equations
          • One or more equations did not get rendered due to their size.
          Instances For
            noncomputable def Module.Presentation.tautological (A : Type u) [Ring A] (M : Type v) [AddCommGroup M] [Module A M] :

            The tautological presentation of any A-module M by generators and relations. There is a generator [m] for any element m : M, and there are two types of relations:

            • [m₁] + [m₂] - [m₁ + m₂] = 0
            • a • [m] - [a • m] = 0.
            Equations
            Instances For
              @[simp]
              theorem Module.Presentation.tautological_var (A : Type u) [Ring A] (M : Type v) [AddCommGroup M] [Module A M] (a : M) :