Characterization of finitely presented modules #
A module is finitely presented (in the sense of Module.FinitePresentation
) iff
it admits a presentation with finitely many generators and relations.
theorem
Module.Presentation.finite
{A : Type u}
[Ring A]
{M : Type v}
[AddCommGroup M]
[Module A M]
(pres : Module.Presentation A M)
[Finite pres.G]
:
Module.Finite A M
theorem
Module.Presentation.finitePresentation
{A : Type u}
[Ring A]
{M : Type v}
[AddCommGroup M]
[Module A M]
(pres : Module.Presentation A M)
[Finite pres.G]
[Finite pres.R]
:
theorem
Module.finitePresentation_iff_exists_presentation
{A : Type u}
[Ring A]
{M : Type v}
[AddCommGroup M]
[Module A M]
:
Module.FinitePresentation A M ↔ ∃ (pres : Module.Presentation A M), Finite pres.G ∧ Finite pres.R