Module operations on Mᵐᵒᵖ
#
This file contains definitions that build on top of the group action definitions in
Mathlib.Algebra.GroupWithZero.Action.Opposite
.
@[instance 910]
Like Semiring.toModule
, but multiplies on the right.
Equations
- Semiring.toOppositeModule = { toMulAction := MulActionWithZero.toMulAction, smul_zero := ⋯, smul_add := ⋯, add_smul := ⋯, zero_smul := ⋯ }
instance
MulOpposite.instModule
(R : Type u)
{M : Type v}
[Semiring R]
[AddCommMonoid M]
[Module R M]
:
MulOpposite.distribMulAction
extends to a Module
Equations
- MulOpposite.instModule R = { toDistribMulAction := MulOpposite.instDistribMulAction, add_smul := ⋯, zero_smul := ⋯ }