Documentation

Mathlib.Algebra.Module.LinearMap.Basic

Further results on (semi)linear maps #

instance LinearMap.instSMulDomMulAct {R : Type u_1} {R' : Type u_2} {M : Type u_4} {M' : Type u_5} [Semiring R] [Semiring R'] [AddCommMonoid M] [AddCommMonoid M'] [Module R M] [Module R' M'] {σ₁₂ : R →+* R'} {S' : Type u_6} [Monoid S'] [DistribMulAction S' M] [SMulCommClass R S' M] :
SMul S'ᵈᵐᵃ (M →ₛₗ[σ₁₂] M')
Equations
  • LinearMap.instSMulDomMulAct = { smul := fun (a : S'ᵈᵐᵃ) (f : M →ₛₗ[σ₁₂] M') => { toFun := a f, map_add' := , map_smul' := } }
theorem DomMulAct.smul_linearMap_apply {R : Type u_1} {R' : Type u_2} {M : Type u_4} {M' : Type u_5} [Semiring R] [Semiring R'] [AddCommMonoid M] [AddCommMonoid M'] [Module R M] [Module R' M'] {σ₁₂ : R →+* R'} {S' : Type u_6} [Monoid S'] [DistribMulAction S' M] [SMulCommClass R S' M] (a : S'ᵈᵐᵃ) (f : M →ₛₗ[σ₁₂] M') (x : M) :
(a f) x = f (DomMulAct.mk.symm a x)
@[simp]
theorem DomMulAct.mk_smul_linearMap_apply {R : Type u_1} {R' : Type u_2} {M : Type u_4} {M' : Type u_5} [Semiring R] [Semiring R'] [AddCommMonoid M] [AddCommMonoid M'] [Module R M] [Module R' M'] {σ₁₂ : R →+* R'} {S' : Type u_6} [Monoid S'] [DistribMulAction S' M] [SMulCommClass R S' M] (a : S') (f : M →ₛₗ[σ₁₂] M') (x : M) :
(DomMulAct.mk a f) x = f (a x)
theorem DomMulAct.coe_smul_linearMap {R : Type u_1} {R' : Type u_2} {M : Type u_4} {M' : Type u_5} [Semiring R] [Semiring R'] [AddCommMonoid M] [AddCommMonoid M'] [Module R M] [Module R' M'] {σ₁₂ : R →+* R'} {S' : Type u_6} [Monoid S'] [DistribMulAction S' M] [SMulCommClass R S' M] (a : S'ᵈᵐᵃ) (f : M →ₛₗ[σ₁₂] M') :
(a f) = a f
instance LinearMap.instSMulCommClassDomMulAct {R : Type u_1} {R' : Type u_2} {M : Type u_4} {M' : Type u_5} [Semiring R] [Semiring R'] [AddCommMonoid M] [AddCommMonoid M'] [Module R M] [Module R' M'] {σ₁₂ : R →+* R'} {S' : Type u_6} {T' : Type u_7} [Monoid S'] [DistribMulAction S' M] [SMulCommClass R S' M] [Monoid T'] [DistribMulAction T' M] [SMulCommClass R T' M] [SMulCommClass S' T' M] :
Equations
  • =
instance LinearMap.instDistribMulActionDomMulActOfSMulCommClass {R : Type u_1} {R' : Type u_2} {M : Type u_4} {M' : Type u_5} [Semiring R] [Semiring R'] [AddCommMonoid M] [AddCommMonoid M'] [Module R M] [Module R' M'] {σ₁₂ : R →+* R'} {S' : Type u_6} [Monoid S'] [DistribMulAction S' M] [SMulCommClass R S' M] :
Equations
instance LinearMap.instNoZeroSMulDivisors {R : Type u_1} {R' : Type u_2} {S : Type u_3} {M : Type u_4} {M' : Type u_5} [Semiring R] [Semiring R'] [AddCommMonoid M] [AddCommMonoid M'] [Module R M] [Module R' M'] {σ₁₂ : R →+* R'} [Semiring S] [Module S M'] [SMulCommClass R' S M'] [NoZeroSMulDivisors S M'] :
Equations
  • =
instance LinearMap.instModuleDomMulActOfSMulCommClass {R : Type u_1} {R' : Type u_2} {S : Type u_3} {M : Type u_4} {M' : Type u_5} [Semiring R] [Semiring R'] [AddCommMonoid M] [AddCommMonoid M'] [Module R M] [Module R' M'] {σ₁₂ : R →+* R'} [Semiring S] [Module S M] [SMulCommClass R S M] :
Module Sᵈᵐᵃ (M →ₛₗ[σ₁₂] M')
Equations
  • LinearMap.instModuleDomMulActOfSMulCommClass = Module.mk