Documentation

Mathlib.Algebra.Module.FreeLocus

The free locus of a module #

Main definitions and results #

Let M be a finitely presented R-module.

def Module.freeLocus (R : Type uR) (M : Type uM) [CommRing R] [AddCommGroup M] [Module R M] :

The free locus of a module, i.e. the set of primes p such that Mₚ is free over Rₚ.

Equations
Instances For
    theorem Module.mem_freeLocus {R : Type uR} {M : Type uM} [CommRing R] [AddCommGroup M] [Module R M] {p : PrimeSpectrum R} :
    p Module.freeLocus R M Module.Free (Localization.AtPrime p.asIdeal) (LocalizedModule p.asIdeal.primeCompl M)
    theorem Module.mem_freeLocus_of_isLocalization {R : Type uR} {M : Type uM} [CommRing R] [AddCommGroup M] [Module R M] (p : PrimeSpectrum R) (Rₚ : Type u_1) (Mₚ : Type u_2) [CommRing Rₚ] [Algebra R Rₚ] [IsLocalization.AtPrime Rₚ p.asIdeal] [AddCommGroup Mₚ] [Module R Mₚ] (f : M →ₗ[R] Mₚ) [IsLocalizedModule p.asIdeal.primeCompl f] [Module Rₚ Mₚ] [IsScalarTower R Rₚ Mₚ] :
    theorem Module.mem_freeLocus_iff_tensor {R : Type uR} {M : Type uM} [CommRing R] [AddCommGroup M] [Module R M] (p : PrimeSpectrum R) (Rₚ : Type u_1) [CommRing Rₚ] [Algebra R Rₚ] [IsLocalization.AtPrime Rₚ p.asIdeal] :
    theorem Module.freeLocus_congr {R : Type uR} {M : Type uM} [CommRing R] [AddCommGroup M] [Module R M] {M' : Type u_1} [AddCommGroup M'] [Module R M'] (e : M ≃ₗ[R] M') :
    noncomputable def Module.rankAtStalk {R : Type uR} (M : Type uM) [CommRing R] [AddCommGroup M] [Module R M] (p : PrimeSpectrum R) :

    The rank of M at the stalk of p is the rank of Mₚ as a Rₚ-module.

    Equations
    Instances For