Module structure and endomorphisms #
In this file, we define Module.toAddMonoidEnd
, which is (•)
as a monoid homomorphism.
We use this to prove some results on scalar multiplication by integers.
def
Module.toAddMonoidEnd
(R : Type u_1)
(M : Type u_3)
[Semiring R]
[AddCommMonoid M]
[Module R M]
:
(•)
as an AddMonoidHom
.
This is a stronger version of DistribMulAction.toAddMonoidEnd
Equations
- Module.toAddMonoidEnd R M = { toMonoidHom := DistribMulAction.toAddMonoidEnd R M, map_zero' := ⋯, map_add' := ⋯ }
Instances For
@[simp]
theorem
Module.toAddMonoidEnd_apply_apply
(R : Type u_1)
(M : Type u_3)
[Semiring R]
[AddCommMonoid M]
[Module R M]
(x : R)
(x✝ : M)
:
A convenience alias for Module.toAddMonoidEnd
as an AddMonoidHom
, usually to allow the
use of AddMonoidHom.flip
.
Equations
- smulAddHom R M = (Module.toAddMonoidEnd R M).toAddMonoidHom
Instances For
@[simp]
theorem
smulAddHom_apply
{R : Type u_1}
{M : Type u_3}
[Semiring R]
[AddCommMonoid M]
[Module R M]
(r : R)
(x : M)
:
theorem
IsAddUnit.smul_left
{S : Type u_2}
{M : Type u_3}
[AddCommMonoid M]
{x : M}
[Monoid S]
[DistribMulAction S M]
(hx : IsAddUnit x)
(s : S)
:
theorem
IsAddUnit.smul_right
{R : Type u_1}
{M : Type u_3}
[Semiring R]
[AddCommMonoid M]
[Module R M]
{r : R}
(x : M)
(hr : IsAddUnit r)
: