Documentation

Mathlib.Algebra.Homology.Square

Relation between pullback/pushout squares and kernel/cokernel sequences #

This file is the bundled counterpart of Algebra.Homology.CommSq. The same results are obtained here for squares sq : Square C where C is an additive category.

@[reducible, inline]

The cokernel cofork attached to a commutative square in a preadditive category.

Equations
Instances For

    A commutative square in a preadditive category is a pushout square iff the corresponding diagram X₁ ⟶ X₂ ⊞ X₃ ⟶ X₄ ⟶ 0 makes X₄ a cokernel.

    Equations
    • sq.isPushoutEquivIsColimitCokernelCofork = { toFun := fun (h : sq.IsPushout) => h.isColimit, invFun := , left_inv := , right_inv := }.trans .isColimitEquivIsColimitCokernelCofork
    Instances For

      The colimit cokernel cofork attached to a pushout square.

      Equations
      • h.isColimitCokernelCofork = .isColimitEquivIsColimitCokernelCofork h.isColimit
      Instances For
        @[reducible, inline]

        The kernel fork attached to a commutative square in a preadditive category.

        Equations
        Instances For

          A commutative square in a preadditive category is a pullback square iff the corresponding diagram 0 ⟶ X₁ ⟶ X₂ ⊞ X₃ ⟶ X₄ ⟶ 0 makes X₁ a kernel.

          Equations
          • sq.isPullbackEquivIsLimitKernelFork = { toFun := fun (h : sq.IsPullback) => h.isLimit, invFun := , left_inv := , right_inv := }.trans .isLimitEquivIsLimitKernelFork
          Instances For

            The limit kernel fork attached to a pullback square.

            Equations
            • h.isLimitKernelFork = .isLimitEquivIsLimitKernelFork h.isLimit
            Instances For