Refinements #
This file contains lemmas about "refinements" that are specific to
the study of the homology of HomologicalComplex
. General
lemmas about refinements and the case of ShortComplex
appear
in the file CategoryTheory.Abelian.Refinements
.
theorem
HomologicalComplex.eq_liftCycles_homologyπ_up_to_refinements
{C : Type u_1}
{ι : Type u_2}
[CategoryTheory.Category.{u_3, u_1} C]
[CategoryTheory.Abelian C]
{c : ComplexShape ι}
(K : HomologicalComplex C c)
{A : C}
{i : ι}
(γ : A ⟶ K.homology i)
(j : ι)
(hj : c.next i = j)
:
∃ (A' : C) (π : A' ⟶ A) (_ : CategoryTheory.Epi π) (z : A' ⟶ K.X i) (hz :
CategoryTheory.CategoryStruct.comp z (K.d i j) = 0),
CategoryTheory.CategoryStruct.comp π γ = CategoryTheory.CategoryStruct.comp (K.liftCycles z j hj hz) (K.homologyπ i)