Documentation

Mathlib.Algebra.GroupWithZero.Pointwise.Finset

Pointwise operations of finsets in a group with zero #

This file proves properties of pointwise operations of finsets in a group with zero.

def Finset.smulZeroClass {α : Type u_1} {β : Type u_2} [DecidableEq β] [Zero β] [SMulZeroClass α β] :

If scalar multiplication by elements of α sends (0 : β) to zero, then the same is true for (0 : Finset β).

Equations
Instances For
    def Finset.distribSMul {α : Type u_1} {β : Type u_2} [DecidableEq β] [AddZeroClass β] [DistribSMul α β] :

    If the scalar multiplication (· • ·) : α → β → β is distributive, then so is (· • ·) : α → Finset β → Finset β.

    Equations
    Instances For
      def Finset.distribMulAction {α : Type u_1} {β : Type u_2} [DecidableEq β] [Monoid α] [AddMonoid β] [DistribMulAction α β] :

      A distributive multiplicative action of a monoid on an additive monoid β gives a distributive multiplicative action on Finset β.

      Equations
      Instances For

        A multiplicative action of a monoid on a monoid β gives a multiplicative action on Set β.

        Equations
        Instances For
          Equations
          • =
          instance Finset.noZeroSMulDivisors {α : Type u_1} {β : Type u_2} [DecidableEq β] [Zero α] [Zero β] [SMul α β] [NoZeroSMulDivisors α β] :
          Equations
          • =
          instance Finset.noZeroSMulDivisors_finset {α : Type u_1} {β : Type u_2} [DecidableEq β] [Zero α] [Zero β] [SMul α β] [NoZeroSMulDivisors α β] :
          Equations
          • =
          theorem Finset.smul_zero_subset {α : Type u_1} {β : Type u_2} [DecidableEq β] [Zero β] [SMulZeroClass α β] (s : Finset α) :
          s 0 0
          theorem Finset.Nonempty.smul_zero {α : Type u_1} {β : Type u_2} [DecidableEq β] [Zero β] [SMulZeroClass α β] {s : Finset α} (hs : s.Nonempty) :
          s 0 = 0
          theorem Finset.zero_mem_smul_finset {α : Type u_1} {β : Type u_2} [DecidableEq β] [Zero β] [SMulZeroClass α β] {t : Finset β} {a : α} (h : 0 t) :
          0 a t
          theorem Finset.zero_mem_smul_finset_iff {α : Type u_1} {β : Type u_2} [DecidableEq β] [Zero β] [SMulZeroClass α β] {t : Finset β} {a : α} [Zero α] [NoZeroSMulDivisors α β] (ha : a 0) :
          0 a t 0 t

          Note that we have neither SMulWithZero α (Finset β) nor SMulWithZero (Finset α) (Finset β) because 0 • ∅ ≠ 0.

          theorem Finset.zero_smul_subset {α : Type u_1} {β : Type u_2} [DecidableEq β] [Zero α] [Zero β] [SMulWithZero α β] (t : Finset β) :
          0 t 0
          theorem Finset.Nonempty.zero_smul {α : Type u_1} {β : Type u_2} [DecidableEq β] [Zero α] [Zero β] [SMulWithZero α β] {t : Finset β} (ht : t.Nonempty) :
          0 t = 0
          @[simp]
          theorem Finset.zero_smul_finset {α : Type u_1} {β : Type u_2} [DecidableEq β] [Zero α] [Zero β] [SMulWithZero α β] {s : Finset β} (h : s.Nonempty) :
          0 s = 0

          A nonempty set is scaled by zero to the singleton set containing zero.

          theorem Finset.zero_smul_finset_subset {α : Type u_1} {β : Type u_2} [DecidableEq β] [Zero α] [Zero β] [SMulWithZero α β] (s : Finset β) :
          0 s 0
          theorem Finset.zero_mem_smul_iff {α : Type u_1} {β : Type u_2} [DecidableEq β] [Zero α] [Zero β] [SMulWithZero α β] {s : Finset α} {t : Finset β} [NoZeroSMulDivisors α β] :
          0 s t 0 s t.Nonempty 0 t s.Nonempty

          Note that Finset is not a MulZeroClass because 0 * ∅ ≠ 0.

          theorem Finset.mul_zero_subset {α : Type u_1} [DecidableEq α] [MulZeroClass α] (s : Finset α) :
          s * 0 0
          theorem Finset.zero_mul_subset {α : Type u_1} [DecidableEq α] [MulZeroClass α] (s : Finset α) :
          0 * s 0
          theorem Finset.Nonempty.mul_zero {α : Type u_1} [DecidableEq α] [MulZeroClass α] {s : Finset α} (hs : s.Nonempty) :
          s * 0 = 0
          theorem Finset.Nonempty.zero_mul {α : Type u_1} [DecidableEq α] [MulZeroClass α] {s : Finset α} (hs : s.Nonempty) :
          0 * s = 0
          @[simp]
          theorem Finset.smul_mem_smul_finset_iff₀ {α : Type u_1} {β : Type u_2} [DecidableEq β] [GroupWithZero α] [MulAction α β] {s : Finset β} {a : α} {b : β} (ha : a 0) :
          a b a s b s
          theorem Finset.inv_smul_mem_iff₀ {α : Type u_1} {β : Type u_2} [DecidableEq β] [GroupWithZero α] [MulAction α β] {s : Finset β} {a : α} {b : β} (ha : a 0) :
          a⁻¹ b s b a s
          theorem Finset.mem_inv_smul_finset_iff₀ {α : Type u_1} {β : Type u_2} [DecidableEq β] [GroupWithZero α] [MulAction α β] {s : Finset β} {a : α} {b : β} (ha : a 0) :
          b a⁻¹ s a b s
          @[simp]
          theorem Finset.smul_finset_subset_smul_finset_iff₀ {α : Type u_1} {β : Type u_2} [DecidableEq β] [GroupWithZero α] [MulAction α β] {s : Finset β} {t : Finset β} {a : α} (ha : a 0) :
          a s a t s t
          theorem Finset.smul_finset_subset_iff₀ {α : Type u_1} {β : Type u_2} [DecidableEq β] [GroupWithZero α] [MulAction α β] {s : Finset β} {t : Finset β} {a : α} (ha : a 0) :
          a s t s a⁻¹ t
          theorem Finset.subset_smul_finset_iff₀ {α : Type u_1} {β : Type u_2} [DecidableEq β] [GroupWithZero α] [MulAction α β] {s : Finset β} {t : Finset β} {a : α} (ha : a 0) :
          s a t a⁻¹ s t
          theorem Finset.smul_finset_inter₀ {α : Type u_1} {β : Type u_2} [DecidableEq β] [GroupWithZero α] [MulAction α β] {s : Finset β} {t : Finset β} {a : α} (ha : a 0) :
          a (s t) = a s a t
          theorem Finset.smul_finset_sdiff₀ {α : Type u_1} {β : Type u_2} [DecidableEq β] [GroupWithZero α] [MulAction α β] {s : Finset β} {t : Finset β} {a : α} (ha : a 0) :
          a (s \ t) = a s \ a t
          theorem Finset.smul_finset_symmDiff₀ {α : Type u_1} {β : Type u_2} [DecidableEq β] [GroupWithZero α] [MulAction α β] {s : Finset β} {t : Finset β} {a : α} (ha : a 0) :
          a symmDiff s t = symmDiff (a s) (a t)
          theorem Finset.smul_finset_univ₀ {α : Type u_1} {β : Type u_2} [DecidableEq β] [GroupWithZero α] [MulAction α β] {a : α} [Fintype β] (ha : a 0) :
          a Finset.univ = Finset.univ
          theorem Finset.smul_univ₀ {α : Type u_1} {β : Type u_2} [DecidableEq β] [GroupWithZero α] [MulAction α β] [Fintype β] {s : Finset α} (hs : ¬s 0) :
          s Finset.univ = Finset.univ
          theorem Finset.smul_univ₀' {α : Type u_1} {β : Type u_2} [DecidableEq β] [GroupWithZero α] [MulAction α β] [Fintype β] {s : Finset α} (hs : s.Nontrivial) :
          s Finset.univ = Finset.univ
          theorem Finset.div_zero_subset {α : Type u_1} [GroupWithZero α] [DecidableEq α] (s : Finset α) :
          s / 0 0
          theorem Finset.zero_div_subset {α : Type u_1} [GroupWithZero α] [DecidableEq α] (s : Finset α) :
          0 / s 0
          theorem Finset.Nonempty.div_zero {α : Type u_1} [GroupWithZero α] [DecidableEq α] {s : Finset α} (hs : s.Nonempty) :
          s / 0 = 0
          theorem Finset.Nonempty.zero_div {α : Type u_1} [GroupWithZero α] [DecidableEq α] {s : Finset α} (hs : s.Nonempty) :
          0 / s = 0
          @[simp]
          theorem Finset.inv_zero {α : Type u_1} [GroupWithZero α] [DecidableEq α] :
          0⁻¹ = 0
          @[simp]
          @[simp]
          theorem Finset.smul_finset_neg {α : Type u_1} {β : Type u_2} [DecidableEq β] [Monoid α] [AddGroup β] [DistribMulAction α β] (a : α) (t : Finset β) :
          a -t = -(a t)
          @[simp]
          theorem Finset.smul_neg {α : Type u_1} {β : Type u_2} [DecidableEq β] [Monoid α] [AddGroup β] [DistribMulAction α β] (s : Finset α) (t : Finset β) :
          s -t = -(s t)