Connection between Submonoid.closure
and Finsupp.prod
#
theorem
Submonoid.exists_finsupp_of_mem_closure_range
{M : Type u_1}
[CommMonoid M]
{ι : Type u_2}
(f : ι → M)
(x : M)
(hx : x ∈ Submonoid.closure (Set.range f))
:
theorem
AddSubmonoid.exists_finsupp_of_mem_closure_range
{M : Type u_1}
[AddCommMonoid M]
{ι : Type u_2}
(f : ι → M)
(x : M)
(hx : x ∈ AddSubmonoid.closure (Set.range f))
:
theorem
Submonoid.mem_closure_range_iff
{M : Type u_1}
[CommMonoid M]
{ι : Type u_2}
{f : ι → M}
{x : M}
:
theorem
AddSubmonoid.mem_closure_range_iff
{M : Type u_1}
[AddCommMonoid M]
{ι : Type u_2}
{f : ι → M}
{x : M}
:
theorem
Submonoid.exists_of_mem_closure_range
{M : Type u_1}
[CommMonoid M]
{ι : Type u_2}
(f : ι → M)
(x : M)
[Fintype ι]
(hx : x ∈ Submonoid.closure (Set.range f))
:
theorem
AddSubmonoid.exists_of_mem_closure_range
{M : Type u_1}
[AddCommMonoid M]
{ι : Type u_2}
(f : ι → M)
(x : M)
[Fintype ι]
(hx : x ∈ AddSubmonoid.closure (Set.range f))
:
theorem
Submonoid.mem_closure_range_iff_of_fintype
{M : Type u_1}
[CommMonoid M]
{ι : Type u_2}
{f : ι → M}
{x : M}
[Fintype ι]
:
theorem
AddSubmonoid.mem_closure_range_iff_of_fintype
{M : Type u_1}
[AddCommMonoid M]
{ι : Type u_2}
{f : ι → M}
{x : M}
[Fintype ι]
: