Documentation

Mathlib.Algebra.Group.Subgroup.Finsupp

Connection between Subgroup.closure and Finsupp.prod #

theorem Subgroup.exists_finsupp_of_mem_closure_range {M : Type u_1} [CommGroup M] {ι : Type u_2} (f : ιM) (x : M) (hx : x Subgroup.closure (Set.range f)) :
∃ (a : ι →₀ ), x = a.prod fun (x1 : ι) (x2 : ) => f x1 ^ x2
theorem AddSubgroup.exists_finsupp_of_mem_closure_range {M : Type u_1} [AddCommGroup M] {ι : Type u_2} (f : ιM) (x : M) (hx : x AddSubgroup.closure (Set.range f)) :
∃ (a : ι →₀ ), x = a.sum fun (x1 : ι) (x2 : ) => x2 f x1
theorem Subgroup.mem_closure_range_iff {M : Type u_1} [CommGroup M] {ι : Type u_2} {f : ιM} {x : M} :
x Subgroup.closure (Set.range f) ∃ (a : ι →₀ ), x = a.prod fun (x1 : ι) (x2 : ) => f x1 ^ x2
theorem AddSubgroup.mem_closure_range_iff {M : Type u_1} [AddCommGroup M] {ι : Type u_2} {f : ιM} {x : M} :
x AddSubgroup.closure (Set.range f) ∃ (a : ι →₀ ), x = a.sum fun (x1 : ι) (x2 : ) => x2 f x1
theorem Subgroup.exists_of_mem_closure_range {M : Type u_1} [CommGroup M] {ι : Type u_2} (f : ιM) (x : M) [Fintype ι] (hx : x Subgroup.closure (Set.range f)) :
∃ (a : ι), x = i : ι, f i ^ a i
theorem AddSubgroup.exists_of_mem_closure_range {M : Type u_1} [AddCommGroup M] {ι : Type u_2} (f : ιM) (x : M) [Fintype ι] (hx : x AddSubgroup.closure (Set.range f)) :
∃ (a : ι), x = i : ι, a i f i
theorem Subgroup.mem_closure_range_iff_of_fintype {M : Type u_1} [CommGroup M] {ι : Type u_2} {f : ιM} {x : M} [Fintype ι] :
x Subgroup.closure (Set.range f) ∃ (a : ι), x = i : ι, f i ^ a i
theorem AddSubgroup.mem_closure_range_iff_of_fintype {M : Type u_1} [AddCommGroup M] {ι : Type u_2} {f : ιM} {x : M} [Fintype ι] :
x AddSubgroup.closure (Set.range f) ∃ (a : ι), x = i : ι, a i f i