Pointwise operations of finsets #
This file defines pointwise algebraic operations on finsets.
Main declarations #
For finsets s
and t
:
s +ᵥ t
(Finset.vadd
): Scalar addition, finset of allx +ᵥ y
wherex ∈ s
andy ∈ t
.s • t
(Finset.smul
): Scalar multiplication, finset of allx • y
wherex ∈ s
andy ∈ t
.s -ᵥ t
(Finset.vsub
): Scalar subtraction, finset of allx -ᵥ y
wherex ∈ s
andy ∈ t
.a • s
(Finset.smulFinset
): Scaling, finset of alla • x
wherex ∈ s
.a +ᵥ s
(Finset.vaddFinset
): Translation, finset of alla +ᵥ x
wherex ∈ s
.
For α
a semigroup/monoid, Finset α
is a semigroup/monoid.
As an unfortunate side effect, this means that n • s
, where n : ℕ
, is ambiguous between
pointwise scaling and repeated pointwise addition; the former has (2 : ℕ) • {1, 2} = {2, 4}
, while
the latter has (2 : ℕ) • {1, 2} = {2, 3, 4}
. See note [pointwise nat action].
Implementation notes #
We put all instances in the locale Pointwise
, so that these instances are not available by
default. Note that we do not mark them as reducible (as argued by note [reducible non-instances])
since we expect the locale to be open whenever the instances are actually used (and making the
instances reducible changes the behavior of simp
.
Tags #
finset multiplication, finset addition, pointwise addition, pointwise multiplication, pointwise subtraction
Scalar addition/multiplication of finsets #
The pointwise product of two finsets s
and t
: s • t = {x • y | x ∈ s, y ∈ t}
.
Equations
- Finset.smul = { smul := Finset.image₂ fun (x1 : α) (x2 : β) => x1 • x2 }
Instances For
The pointwise sum of two finsets s
and t
: s +ᵥ t = {x +ᵥ y | x ∈ s, y ∈ t}
.
Equations
- Finset.vadd = { vadd := Finset.image₂ fun (x1 : α) (x2 : β) => x1 +ᵥ x2 }
Instances For
Alias of Finset.card_smul_le
.
Alias of Finset.card_vadd_le
.
If a finset u
is contained in the scalar product of two sets s • t
, we can find two finsets
s'
, t'
such that s' ⊆ s
, t' ⊆ t
and u ⊆ s' • t'
.
If a finset u
is contained in the scalar sum of two sets s +ᵥ t
, we can find two
finsets s'
, t'
such that s' ⊆ s
, t' ⊆ t
and u ⊆ s' +ᵥ t'
.
Translation/scaling of finsets #
The scaling of a finset s
by a scalar a
: a • s = {a • x | x ∈ s}
.
Equations
- Finset.smulFinset = { smul := fun (a : α) => Finset.image fun (x : β) => a • x }
Instances For
The translation of a finset s
by a vector a
: a +ᵥ s = {a +ᵥ x | x ∈ s}
.
Equations
- Finset.vaddFinset = { vadd := fun (a : α) => Finset.image fun (x : β) => a +ᵥ x }
Instances For
Instances #
Scalar subtraction of finsets #
The pointwise subtraction of two finsets s
and t
: s -ᵥ t = {x -ᵥ y | x ∈ s, y ∈ t}
.
Equations
- Finset.vsub = { vsub := Finset.image₂ fun (x1 x2 : β) => x1 -ᵥ x2 }
Instances For
If a finset u
is contained in the pointwise subtraction of two sets s -ᵥ t
, we can find two
finsets s'
, t'
such that s' ⊆ s
, t' ⊆ t
and u ⊆ s' -ᵥ t'
.