Conjugacy of elements of finite groups #
instance
instFintypeConjClassesOfDecidableRelIsConj
{α : Type u_1}
[Monoid α]
[Fintype α]
[DecidableRel IsConj]
:
Fintype (ConjClasses α)
Equations
- instFintypeConjClassesOfDecidableRelIsConj = Quotient.fintype (IsConj.setoid α)
Equations
- ⋯ = ⋯
instance
instDecidableRelIsConjOfDecidableEqOfFintype
{α : Type u_1}
[Monoid α]
[DecidableEq α]
[Fintype α]
:
DecidableRel IsConj
Equations
- instDecidableRelIsConjOfDecidableEqOfFintype a b = inferInstanceAs (Decidable (∃ (c : αˣ), ↑c * a = b * ↑c))
instance
conjugatesOf.fintype
{α : Type u_1}
[Monoid α]
[Fintype α]
[DecidableRel IsConj]
{a : α}
:
Fintype ↑(conjugatesOf a)
Equations
- conjugatesOf.fintype = Subtype.fintype (Membership.mem (conjugatesOf a))
instance
ConjClasses.instFintypeElemCarrier
{α : Type u_1}
[Monoid α]
[Fintype α]
[DecidableRel IsConj]
{x : ConjClasses α}
:
Fintype ↑x.carrier
Equations
- ConjClasses.instFintypeElemCarrier = Quotient.recOnSubsingleton x fun (x : α) => conjugatesOf.fintype