Option instances for additive and multiplicative actions #
This file defines instances for additive and multiplicative actions on Option
type. Scalar
multiplication is defined by a • some b = some (a • b)
and a • none = none
.
See also #
Equations
- Option.instSMul = { smul := fun (a : M) => Option.map fun (x : α) => a • x }
Equations
- Option.VAdd = { vadd := fun (a : M) => Option.map fun (x : α) => a +ᵥ x }
theorem
Option.smul_def
{M : Type u_1}
{α : Type u_3}
[SMul M α]
(a : M)
(x : Option α)
:
a • x = Option.map (fun (x : α) => a • x) x
theorem
Option.vadd_def
{M : Type u_1}
{α : Type u_3}
[VAdd M α]
(a : M)
(x : Option α)
:
a +ᵥ x = Option.map (fun (x : α) => a +ᵥ x) x
instance
Option.instIsScalarTowerOfSMul
{M : Type u_1}
{N : Type u_2}
{α : Type u_3}
[SMul M α]
[SMul N α]
[SMul M N]
[IsScalarTower M N α]
:
IsScalarTower M N (Option α)
Equations
- ⋯ = ⋯
instance
Option.instIsScalarTowerOfVAdd
{M : Type u_1}
{N : Type u_2}
{α : Type u_3}
[VAdd M α]
[VAdd N α]
[VAdd M N]
[VAddAssocClass M N α]
:
VAddAssocClass M N (Option α)
Equations
- ⋯ = ⋯
instance
Option.instSMulCommClass
{M : Type u_1}
{N : Type u_2}
{α : Type u_3}
[SMul M α]
[SMul N α]
[SMulCommClass M N α]
:
SMulCommClass M N (Option α)
Equations
- ⋯ = ⋯
instance
Option.instVAddCommClass
{M : Type u_1}
{N : Type u_2}
{α : Type u_3}
[VAdd M α]
[VAdd N α]
[VAddCommClass M N α]
:
VAddCommClass M N (Option α)
Equations
- ⋯ = ⋯
instance
Option.instIsCentralScalar
{M : Type u_1}
{α : Type u_3}
[SMul M α]
[SMul Mᵐᵒᵖ α]
[IsCentralScalar M α]
:
IsCentralScalar M (Option α)
Equations
- ⋯ = ⋯
instance
Option.instIsCentralVAdd
{M : Type u_1}
{α : Type u_3}
[VAdd M α]
[VAdd Mᵃᵒᵖ α]
[IsCentralVAdd M α]
:
IsCentralVAdd M (Option α)
Equations
- ⋯ = ⋯
instance
Option.instFaithfulSMul
{M : Type u_1}
{α : Type u_3}
[SMul M α]
[FaithfulSMul M α]
:
FaithfulSMul M (Option α)
Equations
- ⋯ = ⋯
instance
Option.instFaithfulVAdd
{M : Type u_1}
{α : Type u_3}
[VAdd M α]
[FaithfulVAdd M α]
:
FaithfulVAdd M (Option α)
Equations
- ⋯ = ⋯
Equations
- Option.instMulAction = MulAction.mk ⋯ ⋯