Documentation

Mathlib.Algebra.Free

Free constructions #

Main definitions #

inductive FreeAddMagma (α : Type u) :

Free nonabelian additive magma over a given alphabet.

Instances For
    inductive FreeMagma (α : Type u) :

    Free magma over a given alphabet.

    Instances For
      instance FreeMagma.instMul {α : Type u} :
      Equations
      @[simp]
      theorem FreeMagma.mul_eq {α : Type u} (x y : FreeMagma α) :
      x.mul y = x * y
      @[simp]
      theorem FreeAddMagma.add_eq {α : Type u} (x y : FreeAddMagma α) :
      x.add y = x + y

      These lemmas are autogenerated by the inductive definition and due to the existence of mul_eq not in simp normal form

      def FreeMagma.recOnMul {α : Type u} {C : FreeMagma αSort l} (x : FreeMagma α) (ih1 : (x : α) → C (FreeMagma.of x)) (ih2 : (x y : FreeMagma α) → C xC yC (x * y)) :
      C x

      Recursor for FreeMagma using x * y instead of FreeMagma.mul x y.

      Equations
      Instances For
        def FreeAddMagma.recOnAdd {α : Type u} {C : FreeAddMagma αSort l} (x : FreeAddMagma α) (ih1 : (x : α) → C (FreeAddMagma.of x)) (ih2 : (x y : FreeAddMagma α) → C xC yC (x + y)) :
        C x

        Recursor for FreeAddMagma using x + y instead of FreeAddMagma.add x y.

        Equations
        Instances For
          theorem FreeAddMagma.hom_ext {α : Type u} {β : Type v} [Add β] {f g : FreeAddMagma α →ₙ+ β} (h : f FreeAddMagma.of = g FreeAddMagma.of) :
          f = g
          theorem FreeMagma.hom_ext {α : Type u} {β : Type v} [Mul β] {f g : FreeMagma α →ₙ* β} (h : f FreeMagma.of = g FreeMagma.of) :
          f = g
          def FreeMagma.liftAux {α : Type u} {β : Type v} [Mul β] (f : αβ) :
          FreeMagma αβ

          Lifts a function α → β to a magma homomorphism FreeMagma α → β given a magma β.

          Equations
          Instances For
            def FreeAddMagma.liftAux {α : Type u} {β : Type v} [Add β] (f : αβ) :
            FreeAddMagma αβ

            Lifts a function α → β to an additive magma homomorphism FreeAddMagma α → β given an additive magma β.

            Equations
            Instances For
              def FreeMagma.lift {α : Type u} {β : Type v} [Mul β] :
              (αβ) (FreeMagma α →ₙ* β)

              The universal property of the free magma expressing its adjointness.

              Equations
              Instances For
                def FreeAddMagma.lift {α : Type u} {β : Type v} [Add β] :
                (αβ) (FreeAddMagma α →ₙ+ β)

                The universal property of the free additive magma expressing its adjointness.

                Equations
                • One or more equations did not get rendered due to their size.
                Instances For
                  @[simp]
                  theorem FreeAddMagma.lift_symm_apply {α : Type u} {β : Type v} [Add β] (F : FreeAddMagma α →ₙ+ β) (a✝ : α) :
                  FreeAddMagma.lift.symm F a✝ = (F FreeAddMagma.of) a✝
                  @[simp]
                  theorem FreeMagma.lift_symm_apply {α : Type u} {β : Type v} [Mul β] (F : FreeMagma α →ₙ* β) (a✝ : α) :
                  FreeMagma.lift.symm F a✝ = (F FreeMagma.of) a✝
                  @[simp]
                  theorem FreeMagma.lift_of {α : Type u} {β : Type v} [Mul β] (f : αβ) (x : α) :
                  (FreeMagma.lift f) (FreeMagma.of x) = f x
                  @[simp]
                  theorem FreeAddMagma.lift_of {α : Type u} {β : Type v} [Add β] (f : αβ) (x : α) :
                  (FreeAddMagma.lift f) (FreeAddMagma.of x) = f x
                  @[simp]
                  theorem FreeMagma.lift_comp_of {α : Type u} {β : Type v} [Mul β] (f : αβ) :
                  (FreeMagma.lift f) FreeMagma.of = f
                  @[simp]
                  theorem FreeAddMagma.lift_comp_of {α : Type u} {β : Type v} [Add β] (f : αβ) :
                  (FreeAddMagma.lift f) FreeAddMagma.of = f
                  @[simp]
                  theorem FreeMagma.lift_comp_of' {α : Type u} {β : Type v} [Mul β] (f : FreeMagma α →ₙ* β) :
                  FreeMagma.lift (f FreeMagma.of) = f
                  @[simp]
                  theorem FreeAddMagma.lift_comp_of' {α : Type u} {β : Type v} [Add β] (f : FreeAddMagma α →ₙ+ β) :
                  FreeAddMagma.lift (f FreeAddMagma.of) = f
                  def FreeMagma.map {α : Type u} {β : Type v} (f : αβ) :

                  The unique magma homomorphism FreeMagma α →ₙ* FreeMagma β that sends each of x to of (f x).

                  Equations
                  Instances For
                    def FreeAddMagma.map {α : Type u} {β : Type v} (f : αβ) :

                    The unique additive magma homomorphism FreeAddMagma α → FreeAddMagma β that sends each of x to of (f x).

                    Equations
                    Instances For
                      @[simp]
                      theorem FreeMagma.map_of {α : Type u} {β : Type v} (f : αβ) (x : α) :
                      @[simp]
                      theorem FreeAddMagma.map_of {α : Type u} {β : Type v} (f : αβ) (x : α) :
                      def FreeMagma.recOnPure {α : Type u} {C : FreeMagma αSort l} (x : FreeMagma α) (ih1 : (x : α) → C (pure x)) (ih2 : (x y : FreeMagma α) → C xC yC (x * y)) :
                      C x

                      Recursor on FreeMagma using pure instead of of.

                      Equations
                      • x.recOnPure ih1 ih2 = x.recOnMul ih1 ih2
                      Instances For
                        def FreeAddMagma.recOnPure {α : Type u} {C : FreeAddMagma αSort l} (x : FreeAddMagma α) (ih1 : (x : α) → C (pure x)) (ih2 : (x y : FreeAddMagma α) → C xC yC (x + y)) :
                        C x

                        Recursor on FreeAddMagma using pure instead of of.

                        Equations
                        • x.recOnPure ih1 ih2 = x.recOnAdd ih1 ih2
                        Instances For
                          @[simp]
                          theorem FreeMagma.map_pure {α β : Type u} (f : αβ) (x : α) :
                          f <$> pure x = pure (f x)
                          @[simp]
                          theorem FreeAddMagma.map_pure {α β : Type u} (f : αβ) (x : α) :
                          f <$> pure x = pure (f x)
                          @[simp]
                          theorem FreeMagma.map_mul' {α β : Type u} (f : αβ) (x y : FreeMagma α) :
                          f <$> (x * y) = f <$> x * f <$> y
                          @[simp]
                          theorem FreeAddMagma.map_add' {α β : Type u} (f : αβ) (x y : FreeAddMagma α) :
                          f <$> (x + y) = f <$> x + f <$> y
                          @[simp]
                          theorem FreeMagma.pure_bind {α β : Type u} (f : αFreeMagma β) (x : α) :
                          pure x >>= f = f x
                          @[simp]
                          theorem FreeAddMagma.pure_bind {α β : Type u} (f : αFreeAddMagma β) (x : α) :
                          pure x >>= f = f x
                          @[simp]
                          theorem FreeMagma.mul_bind {α β : Type u} (f : αFreeMagma β) (x y : FreeMagma α) :
                          x * y >>= f = (x >>= f) * (y >>= f)
                          @[simp]
                          theorem FreeAddMagma.add_bind {α β : Type u} (f : αFreeAddMagma β) (x y : FreeAddMagma α) :
                          x + y >>= f = (x >>= f) + (y >>= f)
                          @[simp]
                          theorem FreeMagma.pure_seq {α β : Type u} {f : αβ} {x : FreeMagma α} :
                          pure f <*> x = f <$> x
                          @[simp]
                          theorem FreeAddMagma.pure_seq {α β : Type u} {f : αβ} {x : FreeAddMagma α} :
                          pure f <*> x = f <$> x
                          @[simp]
                          theorem FreeMagma.mul_seq {α β : Type u} {f g : FreeMagma (αβ)} {x : FreeMagma α} :
                          f * g <*> x = (f <*> x) * (g <*> x)
                          @[simp]
                          theorem FreeAddMagma.add_seq {α β : Type u} {f g : FreeAddMagma (αβ)} {x : FreeAddMagma α} :
                          f + g <*> x = (f <*> x) + (g <*> x)
                          def FreeMagma.traverse {m : Type u → Type u} [Applicative m] {α β : Type u} (F : αm β) :
                          FreeMagma αm (FreeMagma β)

                          FreeMagma is traversable.

                          Equations
                          Instances For
                            def FreeAddMagma.traverse {m : Type u → Type u} [Applicative m] {α β : Type u} (F : αm β) :

                            FreeAddMagma is traversable.

                            Equations
                            Instances For
                              @[simp]
                              theorem FreeMagma.traverse_pure {α β : Type u} {m : Type u → Type u} [Applicative m] (F : αm β) (x : α) :
                              traverse F (pure x) = pure <$> F x
                              @[simp]
                              theorem FreeAddMagma.traverse_pure {α β : Type u} {m : Type u → Type u} [Applicative m] (F : αm β) (x : α) :
                              traverse F (pure x) = pure <$> F x
                              @[simp]
                              theorem FreeMagma.traverse_pure' {α β : Type u} {m : Type u → Type u} [Applicative m] (F : αm β) :
                              traverse F pure = fun (x : α) => pure <$> F x
                              @[simp]
                              theorem FreeAddMagma.traverse_pure' {α β : Type u} {m : Type u → Type u} [Applicative m] (F : αm β) :
                              traverse F pure = fun (x : α) => pure <$> F x
                              @[simp]
                              theorem FreeMagma.traverse_mul {α β : Type u} {m : Type u → Type u} [Applicative m] (F : αm β) (x y : FreeMagma α) :
                              traverse F (x * y) = (fun (x1 x2 : FreeMagma β) => x1 * x2) <$> traverse F x <*> traverse F y
                              @[simp]
                              theorem FreeAddMagma.traverse_add {α β : Type u} {m : Type u → Type u} [Applicative m] (F : αm β) (x y : FreeAddMagma α) :
                              traverse F (x + y) = (fun (x1 x2 : FreeAddMagma β) => x1 + x2) <$> traverse F x <*> traverse F y
                              @[simp]
                              theorem FreeMagma.traverse_mul' {α β : Type u} {m : Type u → Type u} [Applicative m] (F : αm β) :
                              Function.comp (traverse F) HMul.hMul = fun (x y : FreeMagma α) => (fun (x1 x2 : FreeMagma β) => x1 * x2) <$> traverse F x <*> traverse F y
                              @[simp]
                              theorem FreeAddMagma.traverse_add' {α β : Type u} {m : Type u → Type u} [Applicative m] (F : αm β) :
                              Function.comp (traverse F) HAdd.hAdd = fun (x y : FreeAddMagma α) => (fun (x1 x2 : FreeAddMagma β) => x1 + x2) <$> traverse F x <*> traverse F y
                              @[simp]
                              theorem FreeMagma.traverse_eq {α β : Type u} {m : Type u → Type u} [Applicative m] (F : αm β) (x : FreeMagma α) :
                              @[simp]
                              theorem FreeAddMagma.traverse_eq {α β : Type u} {m : Type u → Type u} [Applicative m] (F : αm β) (x : FreeAddMagma α) :
                              theorem FreeMagma.mul_map_seq {α : Type u} (x y : FreeMagma α) :
                              (fun (x1 x2 : FreeMagma α) => x1 * x2) <$> x <*> y = x * y
                              theorem FreeAddMagma.add_map_seq {α : Type u} (x y : FreeAddMagma α) :
                              (fun (x1 x2 : FreeAddMagma α) => x1 + x2) <$> x <*> y = x + y
                              def FreeMagma.repr {α : Type u} [Repr α] :

                              Representation of an element of a free magma.

                              Equations
                              Instances For

                                Representation of an element of a free additive magma.

                                Equations
                                Instances For
                                  instance instReprFreeMagma {α : Type u} [Repr α] :
                                  Equations
                                  instance instReprFreeAddMagma {α : Type u} [Repr α] :
                                  Equations
                                  def FreeMagma.length {α : Type u} :
                                  FreeMagma α

                                  Length of an element of a free magma.

                                  Equations
                                  Instances For

                                    Length of an element of a free additive magma.

                                    Equations
                                    Instances For
                                      theorem FreeMagma.length_pos {α : Type u} (x : FreeMagma α) :
                                      0 < x.length

                                      The length of an element of a free magma is positive.

                                      theorem FreeAddMagma.length_pos {α : Type u} (x : FreeAddMagma α) :
                                      0 < x.length

                                      The length of an element of a free additive magma is positive.

                                      inductive AddMagma.AssocRel (α : Type u) [Add α] :
                                      ααProp

                                      Associativity relations for an additive magma.

                                      Instances For
                                        inductive Magma.AssocRel (α : Type u) [Mul α] :
                                        ααProp

                                        Associativity relations for a magma.

                                        Instances For
                                          def Magma.AssocQuotient (α : Type u) [Mul α] :

                                          Semigroup quotient of a magma.

                                          Equations
                                          Instances For
                                            def AddMagma.FreeAddSemigroup (α : Type u) [Add α] :

                                            Additive semigroup quotient of an additive magma.

                                            Equations
                                            Instances For
                                              theorem Magma.AssocQuotient.quot_mk_assoc {α : Type u} [Mul α] (x y z : α) :
                                              Quot.mk (Magma.AssocRel α) (x * y * z) = Quot.mk (Magma.AssocRel α) (x * (y * z))
                                              theorem AddMagma.FreeAddSemigroup.quot_mk_assoc {α : Type u} [Add α] (x y z : α) :
                                              Quot.mk (AddMagma.AssocRel α) (x + y + z) = Quot.mk (AddMagma.AssocRel α) (x + (y + z))
                                              theorem Magma.AssocQuotient.quot_mk_assoc_left {α : Type u} [Mul α] (x y z w : α) :
                                              Quot.mk (Magma.AssocRel α) (x * (y * z * w)) = Quot.mk (Magma.AssocRel α) (x * (y * (z * w)))
                                              theorem AddMagma.FreeAddSemigroup.quot_mk_assoc_left {α : Type u} [Add α] (x y z w : α) :
                                              Quot.mk (AddMagma.AssocRel α) (x + (y + z + w)) = Quot.mk (AddMagma.AssocRel α) (x + (y + (z + w)))

                                              Embedding from magma to its free semigroup.

                                              Equations
                                              Instances For

                                                Embedding from additive magma to its free additive semigroup.

                                                Equations
                                                Instances For
                                                  Equations
                                                  theorem Magma.AssocQuotient.induction_on {α : Type u} [Mul α] {C : Magma.AssocQuotient αProp} (x : Magma.AssocQuotient α) (ih : ∀ (x : α), C (Magma.AssocQuotient.of x)) :
                                                  C x
                                                  theorem AddMagma.FreeAddSemigroup.induction_on {α : Type u} [Add α] {C : AddMagma.FreeAddSemigroup αProp} (x : AddMagma.FreeAddSemigroup α) (ih : ∀ (x : α), C (AddMagma.FreeAddSemigroup.of x)) :
                                                  C x
                                                  theorem Magma.AssocQuotient.hom_ext {α : Type u} [Mul α] {β : Type v} [Semigroup β] {f g : Magma.AssocQuotient α →ₙ* β} (h : f.comp Magma.AssocQuotient.of = g.comp Magma.AssocQuotient.of) :
                                                  f = g
                                                  def Magma.AssocQuotient.lift {α : Type u} [Mul α] {β : Type v} [Semigroup β] :

                                                  Lifts a magma homomorphism α → β to a semigroup homomorphism Magma.AssocQuotient α → β given a semigroup β.

                                                  Equations
                                                  • One or more equations did not get rendered due to their size.
                                                  Instances For

                                                    Lifts an additive magma homomorphism α → β to an additive semigroup homomorphism AddMagma.AssocQuotient α → β given an additive semigroup β.

                                                    Equations
                                                    • One or more equations did not get rendered due to their size.
                                                    Instances For
                                                      @[simp]
                                                      theorem Magma.AssocQuotient.lift_of {α : Type u} [Mul α] {β : Type v} [Semigroup β] (f : α →ₙ* β) (x : α) :
                                                      (Magma.AssocQuotient.lift f) (Magma.AssocQuotient.of x) = f x
                                                      @[simp]
                                                      theorem AddMagma.FreeAddSemigroup.lift_of {α : Type u} [Add α] {β : Type v} [AddSemigroup β] (f : α →ₙ+ β) (x : α) :
                                                      (AddMagma.FreeAddSemigroup.lift f) (AddMagma.FreeAddSemigroup.of x) = f x
                                                      @[simp]
                                                      theorem Magma.AssocQuotient.lift_comp_of {α : Type u} [Mul α] {β : Type v} [Semigroup β] (f : α →ₙ* β) :
                                                      (Magma.AssocQuotient.lift f).comp Magma.AssocQuotient.of = f
                                                      @[simp]
                                                      theorem AddMagma.FreeAddSemigroup.lift_comp_of {α : Type u} [Add α] {β : Type v} [AddSemigroup β] (f : α →ₙ+ β) :
                                                      (AddMagma.FreeAddSemigroup.lift f).comp AddMagma.FreeAddSemigroup.of = f
                                                      @[simp]
                                                      theorem Magma.AssocQuotient.lift_comp_of' {α : Type u} [Mul α] {β : Type v} [Semigroup β] (f : Magma.AssocQuotient α →ₙ* β) :
                                                      Magma.AssocQuotient.lift (f.comp Magma.AssocQuotient.of) = f
                                                      @[simp]
                                                      theorem AddMagma.FreeAddSemigroup.lift_comp_of' {α : Type u} [Add α] {β : Type v} [AddSemigroup β] (f : AddMagma.FreeAddSemigroup α →ₙ+ β) :
                                                      AddMagma.FreeAddSemigroup.lift (f.comp AddMagma.FreeAddSemigroup.of) = f

                                                      From a magma homomorphism α →ₙ* β to a semigroup homomorphism Magma.AssocQuotient α →ₙ* Magma.AssocQuotient β.

                                                      Equations
                                                      Instances For

                                                        From an additive magma homomorphism α → β to an additive semigroup homomorphism AddMagma.AssocQuotient α → AddMagma.AssocQuotient β.

                                                        Equations
                                                        Instances For
                                                          @[simp]
                                                          theorem Magma.AssocQuotient.map_of {α : Type u} [Mul α] {β : Type v} [Mul β] (f : α →ₙ* β) (x : α) :
                                                          (Magma.AssocQuotient.map f) (Magma.AssocQuotient.of x) = Magma.AssocQuotient.of (f x)
                                                          @[simp]
                                                          theorem AddMagma.FreeAddSemigroup.map_of {α : Type u} [Add α] {β : Type v} [Add β] (f : α →ₙ+ β) (x : α) :
                                                          (AddMagma.FreeAddSemigroup.map f) (AddMagma.FreeAddSemigroup.of x) = AddMagma.FreeAddSemigroup.of (f x)
                                                          structure FreeAddSemigroup (α : Type u) :

                                                          Free additive semigroup over a given alphabet.

                                                          • head : α

                                                            The head of the element

                                                          • tail : List α

                                                            The tail of the element

                                                          Instances For
                                                            structure FreeSemigroup (α : Type u) :

                                                            Free semigroup over a given alphabet.

                                                            • head : α

                                                              The head of the element

                                                            • tail : List α

                                                              The tail of the element

                                                            Instances For
                                                              theorem FreeSemigroup.ext {α : Type u} {x y : FreeSemigroup α} (head : x.head = y.head) (tail : x.tail = y.tail) :
                                                              x = y
                                                              theorem FreeAddSemigroup.ext {α : Type u} {x y : FreeAddSemigroup α} (head : x.head = y.head) (tail : x.tail = y.tail) :
                                                              x = y
                                                              @[simp]
                                                              theorem FreeSemigroup.head_mul {α : Type u} (x y : FreeSemigroup α) :
                                                              (x * y).head = x.head
                                                              @[simp]
                                                              theorem FreeAddSemigroup.head_add {α : Type u} (x y : FreeAddSemigroup α) :
                                                              (x + y).head = x.head
                                                              @[simp]
                                                              theorem FreeSemigroup.tail_mul {α : Type u} (x y : FreeSemigroup α) :
                                                              (x * y).tail = x.tail ++ y.head :: y.tail
                                                              @[simp]
                                                              theorem FreeAddSemigroup.tail_add {α : Type u} (x y : FreeAddSemigroup α) :
                                                              (x + y).tail = x.tail ++ y.head :: y.tail
                                                              @[simp]
                                                              theorem FreeSemigroup.mk_mul_mk {α : Type u} (x y : α) (L1 L2 : List α) :
                                                              { head := x, tail := L1 } * { head := y, tail := L2 } = { head := x, tail := L1 ++ y :: L2 }
                                                              @[simp]
                                                              theorem FreeAddSemigroup.mk_add_mk {α : Type u} (x y : α) (L1 L2 : List α) :
                                                              { head := x, tail := L1 } + { head := y, tail := L2 } = { head := x, tail := L1 ++ y :: L2 }
                                                              def FreeSemigroup.of {α : Type u} (x : α) :

                                                              The embedding α → FreeSemigroup α.

                                                              Equations
                                                              Instances For
                                                                def FreeAddSemigroup.of {α : Type u} (x : α) :

                                                                The embedding α → FreeAddSemigroup α.

                                                                Equations
                                                                Instances For
                                                                  @[simp]
                                                                  theorem FreeSemigroup.of_head {α : Type u} (x : α) :
                                                                  (FreeSemigroup.of x).head = x
                                                                  @[simp]
                                                                  theorem FreeAddSemigroup.of_tail {α : Type u} (x : α) :
                                                                  @[simp]
                                                                  theorem FreeAddSemigroup.of_head {α : Type u} (x : α) :
                                                                  @[simp]
                                                                  theorem FreeSemigroup.of_tail {α : Type u} (x : α) :
                                                                  (FreeSemigroup.of x).tail = []

                                                                  Length of an element of free semigroup.

                                                                  Equations
                                                                  • x.length = x.tail.length + 1
                                                                  Instances For

                                                                    Length of an element of free additive semigroup

                                                                    Equations
                                                                    • x.length = x.tail.length + 1
                                                                    Instances For
                                                                      @[simp]
                                                                      theorem FreeSemigroup.length_mul {α : Type u} (x y : FreeSemigroup α) :
                                                                      (x * y).length = x.length + y.length
                                                                      @[simp]
                                                                      theorem FreeAddSemigroup.length_add {α : Type u} (x y : FreeAddSemigroup α) :
                                                                      (x + y).length = x.length + y.length
                                                                      @[simp]
                                                                      theorem FreeSemigroup.length_of {α : Type u} (x : α) :
                                                                      (FreeSemigroup.of x).length = 1
                                                                      @[simp]
                                                                      theorem FreeAddSemigroup.length_of {α : Type u} (x : α) :
                                                                      (FreeAddSemigroup.of x).length = 1
                                                                      def FreeSemigroup.recOnMul {α : Type u} {C : FreeSemigroup αSort l} (x : FreeSemigroup α) (ih1 : (x : α) → C (FreeSemigroup.of x)) (ih2 : (x : α) → (y : FreeSemigroup α) → C (FreeSemigroup.of x)C yC (FreeSemigroup.of x * y)) :
                                                                      C x

                                                                      Recursor for free semigroup using of and *.

                                                                      Equations
                                                                      • One or more equations did not get rendered due to their size.
                                                                      Instances For
                                                                        def FreeAddSemigroup.recOnAdd {α : Type u} {C : FreeAddSemigroup αSort l} (x : FreeAddSemigroup α) (ih1 : (x : α) → C (FreeAddSemigroup.of x)) (ih2 : (x : α) → (y : FreeAddSemigroup α) → C (FreeAddSemigroup.of x)C yC (FreeAddSemigroup.of x + y)) :
                                                                        C x

                                                                        Recursor for free additive semigroup using of and +.

                                                                        Equations
                                                                        • One or more equations did not get rendered due to their size.
                                                                        Instances For
                                                                          theorem FreeAddSemigroup.hom_ext {α : Type u} {β : Type v} [Add β] {f g : FreeAddSemigroup α →ₙ+ β} (h : f FreeAddSemigroup.of = g FreeAddSemigroup.of) :
                                                                          f = g
                                                                          theorem FreeSemigroup.hom_ext {α : Type u} {β : Type v} [Mul β] {f g : FreeSemigroup α →ₙ* β} (h : f FreeSemigroup.of = g FreeSemigroup.of) :
                                                                          f = g
                                                                          def FreeSemigroup.lift {α : Type u} {β : Type v} [Semigroup β] :
                                                                          (αβ) (FreeSemigroup α →ₙ* β)

                                                                          Lifts a function α → β to a semigroup homomorphism FreeSemigroup α → β given a semigroup β.

                                                                          Equations
                                                                          • One or more equations did not get rendered due to their size.
                                                                          Instances For
                                                                            def FreeAddSemigroup.lift {α : Type u} {β : Type v} [AddSemigroup β] :
                                                                            (αβ) (FreeAddSemigroup α →ₙ+ β)

                                                                            Lifts a function α → β to an additive semigroup homomorphism FreeAddSemigroup α → β given an additive semigroup β.

                                                                            Equations
                                                                            • One or more equations did not get rendered due to their size.
                                                                            Instances For
                                                                              @[simp]
                                                                              theorem FreeSemigroup.lift_symm_apply {α : Type u} {β : Type v} [Semigroup β] (f : FreeSemigroup α →ₙ* β) (a✝ : α) :
                                                                              FreeSemigroup.lift.symm f a✝ = (f FreeSemigroup.of) a✝
                                                                              @[simp]
                                                                              theorem FreeAddSemigroup.lift_symm_apply {α : Type u} {β : Type v} [AddSemigroup β] (f : FreeAddSemigroup α →ₙ+ β) (a✝ : α) :
                                                                              @[simp]
                                                                              theorem FreeSemigroup.lift_of {α : Type u} {β : Type v} [Semigroup β] (f : αβ) (x : α) :
                                                                              (FreeSemigroup.lift f) (FreeSemigroup.of x) = f x
                                                                              @[simp]
                                                                              theorem FreeAddSemigroup.lift_of {α : Type u} {β : Type v} [AddSemigroup β] (f : αβ) (x : α) :
                                                                              (FreeAddSemigroup.lift f) (FreeAddSemigroup.of x) = f x
                                                                              @[simp]
                                                                              theorem FreeSemigroup.lift_comp_of {α : Type u} {β : Type v} [Semigroup β] (f : αβ) :
                                                                              (FreeSemigroup.lift f) FreeSemigroup.of = f
                                                                              @[simp]
                                                                              theorem FreeAddSemigroup.lift_comp_of {α : Type u} {β : Type v} [AddSemigroup β] (f : αβ) :
                                                                              (FreeAddSemigroup.lift f) FreeAddSemigroup.of = f
                                                                              @[simp]
                                                                              theorem FreeSemigroup.lift_comp_of' {α : Type u} {β : Type v} [Semigroup β] (f : FreeSemigroup α →ₙ* β) :
                                                                              FreeSemigroup.lift (f FreeSemigroup.of) = f
                                                                              @[simp]
                                                                              theorem FreeAddSemigroup.lift_comp_of' {α : Type u} {β : Type v} [AddSemigroup β] (f : FreeAddSemigroup α →ₙ+ β) :
                                                                              FreeAddSemigroup.lift (f FreeAddSemigroup.of) = f
                                                                              theorem FreeSemigroup.lift_of_mul {α : Type u} {β : Type v} [Semigroup β] (f : αβ) (x : α) (y : FreeSemigroup α) :
                                                                              (FreeSemigroup.lift f) (FreeSemigroup.of x * y) = f x * (FreeSemigroup.lift f) y
                                                                              theorem FreeAddSemigroup.lift_of_add {α : Type u} {β : Type v} [AddSemigroup β] (f : αβ) (x : α) (y : FreeAddSemigroup α) :
                                                                              (FreeAddSemigroup.lift f) (FreeAddSemigroup.of x + y) = f x + (FreeAddSemigroup.lift f) y
                                                                              def FreeSemigroup.map {α : Type u} {β : Type v} (f : αβ) :

                                                                              The unique semigroup homomorphism that sends of x to of (f x).

                                                                              Equations
                                                                              Instances For
                                                                                def FreeAddSemigroup.map {α : Type u} {β : Type v} (f : αβ) :

                                                                                The unique additive semigroup homomorphism that sends of x to of (f x).

                                                                                Equations
                                                                                Instances For
                                                                                  @[simp]
                                                                                  theorem FreeSemigroup.map_of {α : Type u} {β : Type v} (f : αβ) (x : α) :
                                                                                  @[simp]
                                                                                  theorem FreeAddSemigroup.map_of {α : Type u} {β : Type v} (f : αβ) (x : α) :
                                                                                  @[simp]
                                                                                  theorem FreeSemigroup.length_map {α : Type u} {β : Type v} (f : αβ) (x : FreeSemigroup α) :
                                                                                  ((FreeSemigroup.map f) x).length = x.length
                                                                                  @[simp]
                                                                                  theorem FreeAddSemigroup.length_map {α : Type u} {β : Type v} (f : αβ) (x : FreeAddSemigroup α) :
                                                                                  ((FreeAddSemigroup.map f) x).length = x.length
                                                                                  def FreeSemigroup.recOnPure {α : Type u} {C : FreeSemigroup αSort l} (x : FreeSemigroup α) (ih1 : (x : α) → C (pure x)) (ih2 : (x : α) → (y : FreeSemigroup α) → C (pure x)C yC (pure x * y)) :
                                                                                  C x

                                                                                  Recursor that uses pure instead of of.

                                                                                  Equations
                                                                                  • x.recOnPure ih1 ih2 = x.recOnMul ih1 ih2
                                                                                  Instances For
                                                                                    def FreeAddSemigroup.recOnPure {α : Type u} {C : FreeAddSemigroup αSort l} (x : FreeAddSemigroup α) (ih1 : (x : α) → C (pure x)) (ih2 : (x : α) → (y : FreeAddSemigroup α) → C (pure x)C yC (pure x + y)) :
                                                                                    C x

                                                                                    Recursor that uses pure instead of of.

                                                                                    Equations
                                                                                    • x.recOnPure ih1 ih2 = x.recOnAdd ih1 ih2
                                                                                    Instances For
                                                                                      @[simp]
                                                                                      theorem FreeSemigroup.map_pure {α β : Type u} (f : αβ) (x : α) :
                                                                                      f <$> pure x = pure (f x)
                                                                                      @[simp]
                                                                                      theorem FreeAddSemigroup.map_pure {α β : Type u} (f : αβ) (x : α) :
                                                                                      f <$> pure x = pure (f x)
                                                                                      @[simp]
                                                                                      theorem FreeSemigroup.map_mul' {α β : Type u} (f : αβ) (x y : FreeSemigroup α) :
                                                                                      f <$> (x * y) = f <$> x * f <$> y
                                                                                      @[simp]
                                                                                      theorem FreeAddSemigroup.map_add' {α β : Type u} (f : αβ) (x y : FreeAddSemigroup α) :
                                                                                      f <$> (x + y) = f <$> x + f <$> y
                                                                                      @[simp]
                                                                                      theorem FreeSemigroup.pure_bind {α β : Type u} (f : αFreeSemigroup β) (x : α) :
                                                                                      pure x >>= f = f x
                                                                                      @[simp]
                                                                                      theorem FreeAddSemigroup.pure_bind {α β : Type u} (f : αFreeAddSemigroup β) (x : α) :
                                                                                      pure x >>= f = f x
                                                                                      @[simp]
                                                                                      theorem FreeSemigroup.mul_bind {α β : Type u} (f : αFreeSemigroup β) (x y : FreeSemigroup α) :
                                                                                      x * y >>= f = (x >>= f) * (y >>= f)
                                                                                      @[simp]
                                                                                      theorem FreeAddSemigroup.add_bind {α β : Type u} (f : αFreeAddSemigroup β) (x y : FreeAddSemigroup α) :
                                                                                      x + y >>= f = (x >>= f) + (y >>= f)
                                                                                      @[simp]
                                                                                      theorem FreeSemigroup.pure_seq {α β : Type u} {f : αβ} {x : FreeSemigroup α} :
                                                                                      pure f <*> x = f <$> x
                                                                                      @[simp]
                                                                                      theorem FreeAddSemigroup.pure_seq {α β : Type u} {f : αβ} {x : FreeAddSemigroup α} :
                                                                                      pure f <*> x = f <$> x
                                                                                      @[simp]
                                                                                      theorem FreeSemigroup.mul_seq {α β : Type u} {f g : FreeSemigroup (αβ)} {x : FreeSemigroup α} :
                                                                                      f * g <*> x = (f <*> x) * (g <*> x)
                                                                                      @[simp]
                                                                                      theorem FreeAddSemigroup.add_seq {α β : Type u} {f g : FreeAddSemigroup (αβ)} {x : FreeAddSemigroup α} :
                                                                                      f + g <*> x = (f <*> x) + (g <*> x)
                                                                                      def FreeSemigroup.traverse {m : Type u → Type u} [Applicative m] {α β : Type u} (F : αm β) (x : FreeSemigroup α) :

                                                                                      FreeSemigroup is traversable.

                                                                                      Equations
                                                                                      • One or more equations did not get rendered due to their size.
                                                                                      Instances For
                                                                                        def FreeAddSemigroup.traverse {m : Type u → Type u} [Applicative m] {α β : Type u} (F : αm β) (x : FreeAddSemigroup α) :

                                                                                        FreeAddSemigroup is traversable.

                                                                                        Equations
                                                                                        • One or more equations did not get rendered due to their size.
                                                                                        Instances For
                                                                                          @[simp]
                                                                                          theorem FreeSemigroup.traverse_pure {α β : Type u} {m : Type u → Type u} [Applicative m] (F : αm β) (x : α) :
                                                                                          traverse F (pure x) = pure <$> F x
                                                                                          @[simp]
                                                                                          theorem FreeAddSemigroup.traverse_pure {α β : Type u} {m : Type u → Type u} [Applicative m] (F : αm β) (x : α) :
                                                                                          traverse F (pure x) = pure <$> F x
                                                                                          @[simp]
                                                                                          theorem FreeSemigroup.traverse_pure' {α β : Type u} {m : Type u → Type u} [Applicative m] (F : αm β) :
                                                                                          traverse F pure = fun (x : α) => pure <$> F x
                                                                                          @[simp]
                                                                                          theorem FreeAddSemigroup.traverse_pure' {α β : Type u} {m : Type u → Type u} [Applicative m] (F : αm β) :
                                                                                          traverse F pure = fun (x : α) => pure <$> F x
                                                                                          @[simp]
                                                                                          theorem FreeSemigroup.traverse_mul {α β : Type u} {m : Type u → Type u} [Applicative m] (F : αm β) [LawfulApplicative m] (x y : FreeSemigroup α) :
                                                                                          traverse F (x * y) = (fun (x1 x2 : FreeSemigroup β) => x1 * x2) <$> traverse F x <*> traverse F y
                                                                                          @[simp]
                                                                                          theorem FreeAddSemigroup.traverse_add {α β : Type u} {m : Type u → Type u} [Applicative m] (F : αm β) [LawfulApplicative m] (x y : FreeAddSemigroup α) :
                                                                                          traverse F (x + y) = (fun (x1 x2 : FreeAddSemigroup β) => x1 + x2) <$> traverse F x <*> traverse F y
                                                                                          @[simp]
                                                                                          theorem FreeSemigroup.traverse_mul' {α β : Type u} {m : Type u → Type u} [Applicative m] (F : αm β) [LawfulApplicative m] :
                                                                                          Function.comp (traverse F) HMul.hMul = fun (x y : FreeSemigroup α) => (fun (x1 x2 : FreeSemigroup β) => x1 * x2) <$> traverse F x <*> traverse F y
                                                                                          @[simp]
                                                                                          theorem FreeAddSemigroup.traverse_add' {α β : Type u} {m : Type u → Type u} [Applicative m] (F : αm β) [LawfulApplicative m] :
                                                                                          Function.comp (traverse F) HAdd.hAdd = fun (x y : FreeAddSemigroup α) => (fun (x1 x2 : FreeAddSemigroup β) => x1 + x2) <$> traverse F x <*> traverse F y
                                                                                          @[simp]
                                                                                          theorem FreeSemigroup.traverse_eq {α β : Type u} {m : Type u → Type u} [Applicative m] (F : αm β) (x : FreeSemigroup α) :
                                                                                          @[simp]
                                                                                          theorem FreeAddSemigroup.traverse_eq {α β : Type u} {m : Type u → Type u} [Applicative m] (F : αm β) (x : FreeAddSemigroup α) :
                                                                                          theorem FreeSemigroup.mul_map_seq {α : Type u} (x y : FreeSemigroup α) :
                                                                                          (fun (x1 x2 : FreeSemigroup α) => x1 * x2) <$> x <*> y = x * y
                                                                                          theorem FreeAddSemigroup.add_map_seq {α : Type u} (x y : FreeAddSemigroup α) :
                                                                                          (fun (x1 x2 : FreeAddSemigroup α) => x1 + x2) <$> x <*> y = x + y
                                                                                          Equations
                                                                                          Equations

                                                                                          The canonical multiplicative morphism from FreeMagma α to FreeSemigroup α.

                                                                                          Equations
                                                                                          Instances For

                                                                                            The canonical additive morphism from FreeAddMagma α to FreeAddSemigroup α.

                                                                                            Equations
                                                                                            Instances For
                                                                                              @[simp]
                                                                                              theorem FreeMagma.toFreeSemigroup_of {α : Type u} (x : α) :
                                                                                              FreeMagma.toFreeSemigroup (FreeMagma.of x) = FreeSemigroup.of x
                                                                                              @[simp]
                                                                                              theorem FreeAddMagma.toFreeAddSemigroup_of {α : Type u} (x : α) :
                                                                                              FreeAddMagma.toFreeAddSemigroup (FreeAddMagma.of x) = FreeAddSemigroup.of x
                                                                                              theorem FreeMagma.toFreeSemigroup_map {α : Type u} {β : Type v} (f : αβ) (x : FreeMagma α) :
                                                                                              FreeMagma.toFreeSemigroup ((FreeMagma.map f) x) = (FreeSemigroup.map f) (FreeMagma.toFreeSemigroup x)
                                                                                              theorem FreeAddMagma.toFreeAddSemigroup_map {α : Type u} {β : Type v} (f : αβ) (x : FreeAddMagma α) :
                                                                                              FreeAddMagma.toFreeAddSemigroup ((FreeAddMagma.map f) x) = (FreeAddSemigroup.map f) (FreeAddMagma.toFreeAddSemigroup x)
                                                                                              @[simp]
                                                                                              theorem FreeMagma.length_toFreeSemigroup {α : Type u} (x : FreeMagma α) :
                                                                                              (FreeMagma.toFreeSemigroup x).length = x.length
                                                                                              @[simp]
                                                                                              theorem FreeAddMagma.length_toFreeAddSemigroup {α : Type u} (x : FreeAddMagma α) :
                                                                                              (FreeAddMagma.toFreeAddSemigroup x).length = x.length

                                                                                              Isomorphism between Magma.AssocQuotient (FreeMagma α) and FreeSemigroup α.

                                                                                              Equations
                                                                                              Instances For

                                                                                                Isomorphism between AddMagma.AssocQuotient (FreeAddMagma α) and FreeAddSemigroup α.

                                                                                                Equations
                                                                                                Instances For