Documentation

Mathlib.Algebra.EuclideanDomain.Defs

Euclidean domains #

This file introduces Euclidean domains and provides the extended Euclidean algorithm. To be precise, a slightly more general version is provided which is sometimes called a transfinite Euclidean domain and differs in the fact that the degree function need not take values in but can take values in any well-ordered set. Transfinite Euclidean domains were introduced by Motzkin and examples which don't satisfy the classical notion were provided independently by Hiblot and Nagata.

Main definitions #

Main statements #

See Algebra.EuclideanDomain.Basic for most of the theorems about Euclidean domains, including Bézout's lemma.

See Algebra.EuclideanDomain.Instances for the fact that is a Euclidean domain, as is any field.

Notation #

denotes the well founded relation on the Euclidean domain, e.g. in the example of the polynomial ring over a field, p ≺ q for polynomials p and q if and only if the degree of p is less than the degree of q.

Implementation details #

Instead of working with a valuation, EuclideanDomain is implemented with the existence of a well founded relation r on the integral domain R, which in the example of would correspond to setting i ≺ j for integers i and j if the absolute value of i is smaller than the absolute value of j.

References #

Tags #

Euclidean domain, transfinite Euclidean domain, Bézout's lemma

A EuclideanDomain is a non-trivial commutative ring with a division and a remainder, satisfying b * (a / b) + a % b = a. The definition of a Euclidean domain usually includes a valuation function R → ℕ. This definition is slightly generalised to include a well founded relation r with the property that r (a % b) b, instead of a valuation.

    Instances

      Division by zero should always give zero by convention.

      The property that links the quotient and remainder functions. This allows us to compute GCDs and LCMs.

      theorem EuclideanDomain.r_wellFounded {R : Type u} [self : EuclideanDomain R] :
      WellFounded EuclideanDomain.r

      The relation r must be well-founded. This ensures that the GCD algorithm always terminates.

      theorem EuclideanDomain.remainder_lt {R : Type u} [self : EuclideanDomain R] (a : R) {b : R} :

      The relation r satisfies r (a % b) b.

      theorem EuclideanDomain.mul_left_not_lt {R : Type u} [self : EuclideanDomain R] (a : R) {b : R} :
      b 0¬EuclideanDomain.r (a * b) a

      An additional constraint on r.

      Equations
      • EuclideanDomain.wellFoundedRelation = { rel := EuclideanDomain.r, wf := }
      Instances For
        instance EuclideanDomain.isWellFounded {R : Type u} [EuclideanDomain R] :
        IsWellFounded R fun (x1 x2 : R) => EuclideanDomain.r x1 x2
        Equations
        • =
        @[instance 70]
        Equations
        • EuclideanDomain.instDiv = { div := EuclideanDomain.quotient }
        @[instance 70]
        Equations
        • EuclideanDomain.instMod = { mod := EuclideanDomain.remainder }
        theorem EuclideanDomain.div_add_mod {R : Type u} [EuclideanDomain R] (a : R) (b : R) :
        b * (a / b) + a % b = a
        theorem EuclideanDomain.mod_add_div {R : Type u} [EuclideanDomain R] (a : R) (b : R) :
        a % b + b * (a / b) = a
        theorem EuclideanDomain.mod_add_div' {R : Type u} [EuclideanDomain R] (m : R) (k : R) :
        m % k + m / k * k = m
        theorem EuclideanDomain.div_add_mod' {R : Type u} [EuclideanDomain R] (m : R) (k : R) :
        m / k * k + m % k = m
        theorem EuclideanDomain.mod_eq_sub_mul_div {R : Type u_1} [EuclideanDomain R] (a : R) (b : R) :
        a % b = a - b * (a / b)
        theorem EuclideanDomain.mod_lt {R : Type u} [EuclideanDomain R] (a : R) {b : R} :
        b 0EuclideanDomain.r (a % b) b
        theorem EuclideanDomain.mul_right_not_lt {R : Type u} [EuclideanDomain R] {a : R} (b : R) (h : a 0) :
        @[simp]
        theorem EuclideanDomain.mod_zero {R : Type u} [EuclideanDomain R] (a : R) :
        a % 0 = a
        theorem EuclideanDomain.lt_one {R : Type u} [EuclideanDomain R] (a : R) :
        EuclideanDomain.r a 1a = 0
        theorem EuclideanDomain.val_dvd_le {R : Type u} [EuclideanDomain R] (a : R) (b : R) :
        b aa 0¬EuclideanDomain.r a b
        @[simp]
        theorem EuclideanDomain.div_zero {R : Type u} [EuclideanDomain R] (a : R) :
        a / 0 = 0
        @[irreducible]
        theorem EuclideanDomain.GCD.induction {R : Type u} [EuclideanDomain R] {P : RRProp} (a : R) (b : R) (H0 : ∀ (x : R), P 0 x) (H1 : ∀ (a b : R), a 0P (b % a) aP a b) :
        P a b
        @[irreducible]
        def EuclideanDomain.gcd {R : Type u} [EuclideanDomain R] [DecidableEq R] (a : R) (b : R) :
        R

        gcd a b is a (non-unique) element such that gcd a b ∣ a gcd a b ∣ b, and for any element c such that c ∣ a and c ∣ b, then c ∣ gcd a b

        Equations
        Instances For
          @[irreducible]
          def EuclideanDomain.xgcdAux {R : Type u} [EuclideanDomain R] [DecidableEq R] (r : R) (s : R) (t : R) (r' : R) (s' : R) (t' : R) :
          R × R × R

          An implementation of the extended GCD algorithm. At each step we are computing a triple (r, s, t), where r is the next value of the GCD algorithm, to compute the greatest common divisor of the input (say x and y), and s and t are the coefficients in front of x and y to obtain r (i.e. r = s * x + t * y). The function xgcdAux takes in two triples, and from these recursively computes the next triple:

          xgcdAux (r, s, t) (r', s', t') = xgcdAux (r' % r, s' - (r' / r) * s, t' - (r' / r) * t) (r, s, t)
          
          Equations
          Instances For
            @[simp]
            theorem EuclideanDomain.xgcd_zero_left {R : Type u} [EuclideanDomain R] [DecidableEq R] {s : R} {t : R} {r' : R} {s' : R} {t' : R} :
            EuclideanDomain.xgcdAux 0 s t r' s' t' = (r', s', t')
            theorem EuclideanDomain.xgcdAux_rec {R : Type u} [EuclideanDomain R] [DecidableEq R] {r : R} {s : R} {t : R} {r' : R} {s' : R} {t' : R} (h : r 0) :
            EuclideanDomain.xgcdAux r s t r' s' t' = EuclideanDomain.xgcdAux (r' % r) (s' - r' / r * s) (t' - r' / r * t) r s t
            def EuclideanDomain.xgcd {R : Type u} [EuclideanDomain R] [DecidableEq R] (x : R) (y : R) :
            R × R

            Use the extended GCD algorithm to generate the a and b values satisfying gcd x y = x * a + y * b.

            Equations
            Instances For
              def EuclideanDomain.gcdA {R : Type u} [EuclideanDomain R] [DecidableEq R] (x : R) (y : R) :
              R

              The extended GCD a value in the equation gcd x y = x * a + y * b.

              Equations
              Instances For
                def EuclideanDomain.gcdB {R : Type u} [EuclideanDomain R] [DecidableEq R] (x : R) (y : R) :
                R

                The extended GCD b value in the equation gcd x y = x * a + y * b.

                Equations
                Instances For
                  def EuclideanDomain.lcm {R : Type u} [EuclideanDomain R] [DecidableEq R] (x : R) (y : R) :
                  R

                  lcm a b is a (non-unique) element such that a ∣ lcm a b b ∣ lcm a b, and for any element c such that a ∣ c and b ∣ c, then lcm a b ∣ c

                  Equations
                  Instances For