Decomposition of the identity of a ring into orthogonal idempotents #
In this file we show that if a ring R
can be decomposed into a direct sum
of (left) ideals R = V₁ ⊕ V₂ ⊕ ⬝ ⬝ ⬝ ⊕ Vₙ
then in the corresponding decomposition
1 = e₁ + e₂ + ⬝ ⬝ ⬝ + eₙ
with eᵢ ∈ Vᵢ
, each eᵢ
is an idempotent and the
eᵢ
's form a family of complete orthogonal idempotents.
def
DirectSum.idempotent
{R : Type u_1}
{I : Type u_2}
[Ring R]
[DecidableEq I]
(V : I → Ideal R)
[DirectSum.Decomposition V]
(i : I)
:
R
The decomposition of (1 : R)
where 1 = e₁ + e₂ + ⬝ ⬝ ⬝ + eₙ
which is induced by
the decomposition of the ring R = V1 ⊕ V2 ⊕ ⬝ ⬝ ⬝ ⊕ Vn
.
Equations
- DirectSum.idempotent V i = ↑(((DirectSum.decompose V) 1) i)
Instances For
theorem
DirectSum.decompose_eq_mul_idempotent
{R : Type u_1}
{I : Type u_2}
[Ring R]
[DecidableEq I]
(V : I → Ideal R)
[DirectSum.Decomposition V]
(x : R)
(i : I)
:
↑(((DirectSum.decompose V) x) i) = x * DirectSum.idempotent V i
theorem
DirectSum.isIdempotentElem_idempotent
{R : Type u_1}
{I : Type u_2}
[Ring R]
[DecidableEq I]
(V : I → Ideal R)
[DirectSum.Decomposition V]
(i : I)
:
theorem
DirectSum.completeOrthogonalIdempotents_idempotent
{R : Type u_1}
{I : Type u_2}
[Ring R]
[DecidableEq I]
(V : I → Ideal R)
[DirectSum.Decomposition V]
[Fintype I]
:
CompleteOrthogonalIdempotents fun (i : I) => DirectSum.idempotent V i
If a ring can be decomposed into direct sum of finite left ideals Vᵢ
where 1 = e₁ + ... + eₙ
and eᵢ ∈ Vᵢ
, then eᵢ
is a family of complete
orthogonal idempotents.