Tensor product with direct limit of finitely generated submodules #
we show that if M
and P
are arbitrary modules and N
is a finitely generated submodule
of a module P
, then two elements of N ⊗ M
have the same image in P ⊗ M
if and only if
they already have the same image in N' ⊗ M
for some finitely generated submodule N' ≥ N
.
This is the theorem Submodule.FG.exists_rTensor_fg_inclusion_eq
. The key facts used are
that every module is the direct limit of its finitely generated submodules and that tensor
product preserves colimits.
theorem
Submodule.FG.exists_rTensor_fg_inclusion_eq
{R : Type u_1}
{M : Type u_2}
{P : Type u_3}
[CommSemiring R]
[AddCommMonoid M]
[Module R M]
[AddCommMonoid P]
[Module R P]
{N : Submodule R P}
(hN : N.FG)
{x y : TensorProduct R (↥N) M}
(eq : (LinearMap.rTensor M N.subtype) x = (LinearMap.rTensor M N.subtype) y)
:
∃ (N' : Submodule R P),
N'.FG ∧ ∃ (h : N ≤ N'), (LinearMap.rTensor M (Submodule.inclusion h)) x = (LinearMap.rTensor M (Submodule.inclusion h)) y