Documentation

Mathlib.Algebra.Colimit.Ring

Direct limit of rings, and fields #

See Atiyah-Macdonald PP.32-33, Matsumura PP.269-270

Generalizes the notion of "union", or "gluing", of incomparable rings or fields.

It is constructed as a quotient of the free commutative ring instead of a quotient of the disjoint union so as to make the operations (addition etc.) "computable".

Main definition #

noncomputable def Ring.DirectLimit {ι : Type u_1} [Preorder ι] (G : ιType u_2) [(i : ι) → CommRing (G i)] (f : (i j : ι) → i jG iG j) :
Type (max (max u_1 u_2) u_2 u_1)

The direct limit of a directed system is the rings glued together along the maps.

Equations
  • One or more equations did not get rendered due to their size.
Instances For
    noncomputable instance Ring.DirectLimit.commRing {ι : Type u_1} [Preorder ι] (G : ιType u_2) [(i : ι) → CommRing (G i)] (f : (i j : ι) → i jG iG j) :
    Equations
    • One or more equations did not get rendered due to their size.
    noncomputable instance Ring.DirectLimit.ring {ι : Type u_1} [Preorder ι] (G : ιType u_2) [(i : ι) → CommRing (G i)] (f : (i j : ι) → i jG iG j) :
    Equations
    noncomputable instance Ring.DirectLimit.zero {ι : Type u_1} [Preorder ι] (G : ιType u_2) [(i : ι) → CommRing (G i)] (f : (i j : ι) → i jG iG j) :
    Equations
    noncomputable instance Ring.DirectLimit.instInhabited {ι : Type u_1} [Preorder ι] (G : ιType u_2) [(i : ι) → CommRing (G i)] (f : (i j : ι) → i jG iG j) :
    Equations
    noncomputable def Ring.DirectLimit.of {ι : Type u_1} [Preorder ι] (G : ιType u_2) [(i : ι) → CommRing (G i)] (f : (i j : ι) → i jG iG j) (i : ι) :

    The canonical map from a component to the direct limit.

    Equations
    • One or more equations did not get rendered due to their size.
    Instances For
      theorem Ring.DirectLimit.quotientMk_of {ι : Type u_1} [Preorder ι] {G : ιType u_2} [(i : ι) → CommRing (G i)] {f : (i j : ι) → i jG iG j} (i : ι) (x : G i) :
      (Ideal.Quotient.mk (Ideal.span {a : FreeCommRing ((i : ι) × G i) | (∃ (i : ι) (j : ι) (H : i j) (x : G i), FreeCommRing.of j, f i j H x - FreeCommRing.of i, x = a) (∃ (i : ι), FreeCommRing.of i, 1 - 1 = a) (∃ (i : ι) (x : G i) (y : G i), FreeCommRing.of i, x + y - (FreeCommRing.of i, x + FreeCommRing.of i, y) = a) ∃ (i : ι) (x : G i) (y : G i), FreeCommRing.of i, x * y - FreeCommRing.of i, x * FreeCommRing.of i, y = a})) (FreeCommRing.of i, x) = (Ring.DirectLimit.of G f i) x
      @[simp]
      theorem Ring.DirectLimit.of_f {ι : Type u_1} [Preorder ι] {G : ιType u_2} [(i : ι) → CommRing (G i)] {f : (i j : ι) → i jG iG j} {i j : ι} (hij : i j) (x : G i) :
      (Ring.DirectLimit.of G f j) (f i j hij x) = (Ring.DirectLimit.of G f i) x
      theorem Ring.DirectLimit.exists_of {ι : Type u_1} [Preorder ι] {G : ιType u_2} [(i : ι) → CommRing (G i)] {f : (i j : ι) → i jG iG j} [Nonempty ι] [IsDirected ι fun (x1 x2 : ι) => x1 x2] (z : Ring.DirectLimit G f) :
      ∃ (i : ι) (x : G i), (Ring.DirectLimit.of G f i) x = z

      Every element of the direct limit corresponds to some element in some component of the directed system.

      theorem Ring.DirectLimit.Polynomial.exists_of {ι : Type u_1} [Preorder ι] {G : ιType u_2} [(i : ι) → CommRing (G i)] {f' : (i j : ι) → i jG i →+* G j} [Nonempty ι] [IsDirected ι fun (x1 x2 : ι) => x1 x2] (q : Polynomial (Ring.DirectLimit G fun (i j : ι) (h : i j) => (f' i j h))) :
      ∃ (i : ι) (p : Polynomial (G i)), Polynomial.map (Ring.DirectLimit.of G (fun (i j : ι) (h : i j) => (f' i j h)) i) p = q
      theorem Ring.DirectLimit.induction_on {ι : Type u_1} [Preorder ι] {G : ιType u_2} [(i : ι) → CommRing (G i)] {f : (i j : ι) → i jG iG j} [Nonempty ι] [IsDirected ι fun (x1 x2 : ι) => x1 x2] {C : Ring.DirectLimit G fProp} (z : Ring.DirectLimit G f) (ih : ∀ (i : ι) (x : G i), C ((Ring.DirectLimit.of G f i) x)) :
      C z
      noncomputable def Ring.DirectLimit.lift {ι : Type u_1} [Preorder ι] (G : ιType u_2) [(i : ι) → CommRing (G i)] (f : (i j : ι) → i jG iG j) (P : Type u_3) [CommRing P] (g : (i : ι) → G i →+* P) (Hg : ∀ (i j : ι) (hij : i j) (x : G i), (g j) (f i j hij x) = (g i) x) :

      The universal property of the direct limit: maps from the components to another ring that respect the directed system structure (i.e. make some diagram commute) give rise to a unique map out of the direct limit.

      Equations
      • One or more equations did not get rendered due to their size.
      Instances For
        @[simp]
        theorem Ring.DirectLimit.lift_of {ι : Type u_1} [Preorder ι] {G : ιType u_2} [(i : ι) → CommRing (G i)] {f : (i j : ι) → i jG iG j} (P : Type u_3) [CommRing P] (g : (i : ι) → G i →+* P) (Hg : ∀ (i j : ι) (hij : i j) (x : G i), (g j) (f i j hij x) = (g i) x) (i : ι) (x : G i) :
        (Ring.DirectLimit.lift G f P g Hg) ((Ring.DirectLimit.of G f i) x) = (g i) x
        theorem Ring.DirectLimit.lift_unique {ι : Type u_1} [Preorder ι] {G : ιType u_2} [(i : ι) → CommRing (G i)] {f : (i j : ι) → i jG iG j} (P : Type u_3) [CommRing P] (F : Ring.DirectLimit G f →+* P) (x : Ring.DirectLimit G f) :
        F x = (Ring.DirectLimit.lift G f P (fun (i : ι) => F.comp (Ring.DirectLimit.of G f i)) ) x
        theorem Ring.DirectLimit.lift_injective {ι : Type u_1} [Preorder ι] {G : ιType u_2} [(i : ι) → CommRing (G i)] {f : (i j : ι) → i jG iG j} (P : Type u_3) [CommRing P] (g : (i : ι) → G i →+* P) (Hg : ∀ (i j : ι) (hij : i j) (x : G i), (g j) (f i j hij x) = (g i) x) [Nonempty ι] [IsDirected ι fun (x1 x2 : ι) => x1 x2] (injective : ∀ (i : ι), Function.Injective (g i)) :
        noncomputable def Ring.DirectLimit.ringEquiv {ι : Type u_1} [Preorder ι] (G : ιType u_2) [(i : ι) → CommRing (G i)] (f' : (i j : ι) → i jG i →+* G j) [DirectedSystem G fun (i j : ι) (h : i j) => (f' i j h)] [IsDirected ι fun (x1 x2 : ι) => x1 x2] [Nonempty ι] :
        (Ring.DirectLimit G fun (x1 x2 : ι) (x3 : x1 x2) => (f' x1 x2 x3)) ≃+* DirectLimit G f'

        The direct limit constructed as a quotient of the free commutative ring is isomorphic to the direct limit constructed as a quotient of the disjoint union.

        Equations
        • One or more equations did not get rendered due to their size.
        Instances For
          theorem Ring.DirectLimit.ringEquiv_of {ι : Type u_1} [Preorder ι] (G : ιType u_2) [(i : ι) → CommRing (G i)] (f' : (i j : ι) → i jG i →+* G j) [DirectedSystem G fun (i j : ι) (h : i j) => (f' i j h)] [IsDirected ι fun (x1 x2 : ι) => x1 x2] [Nonempty ι] {i : ι} {g : G i} :
          (Ring.DirectLimit.ringEquiv G f') ((Ring.DirectLimit.of G (fun (x1 x2 : ι) (x3 : x1 x2) => (f' x1 x2 x3)) i) g) = i, g
          theorem Ring.DirectLimit.ringEquiv_symm_mk {ι : Type u_1} [Preorder ι] (G : ιType u_2) [(i : ι) → CommRing (G i)] (f' : (i j : ι) → i jG i →+* G j) [DirectedSystem G fun (i j : ι) (h : i j) => (f' i j h)] [IsDirected ι fun (x1 x2 : ι) => x1 x2] [Nonempty ι] {g : (i : ι) × G i} :
          (Ring.DirectLimit.ringEquiv G f').symm g = (Ring.DirectLimit.of G (fun (x1 x2 : ι) (x3 : x1 x2) => (f' x1 x2 x3)) g.fst) g.snd
          theorem Ring.DirectLimit.of.zero_exact {ι : Type u_1} [Preorder ι] {G : ιType u_2} [(i : ι) → CommRing (G i)] {f' : (i j : ι) → i jG i →+* G j} [DirectedSystem G fun (i j : ι) (h : i j) => (f' i j h)] [IsDirected ι fun (x1 x2 : ι) => x1 x2] {i : ι} {x : G i} (hix : (Ring.DirectLimit.of G (fun (x1 x2 : ι) (x3 : x1 x2) => (f' x1 x2 x3)) i) x = 0) :
          ∃ (j : ι) (hij : i j), (f' i j hij) x = 0

          A component that corresponds to zero in the direct limit is already zero in some bigger module in the directed system.

          theorem Ring.DirectLimit.of_injective {ι : Type u_1} [Preorder ι] {G : ιType u_2} [(i : ι) → CommRing (G i)] (f' : (i j : ι) → i jG i →+* G j) [IsDirected ι fun (x1 x2 : ι) => x1 x2] [DirectedSystem G fun (i j : ι) (h : i j) => (f' i j h)] (hf : ∀ (i j : ι) (hij : i j), Function.Injective (f' i j hij)) (i : ι) :
          Function.Injective (Ring.DirectLimit.of G (fun (i j : ι) (h : i j) => (f' i j h)) i)

          If the maps in the directed system are injective, then the canonical maps from the components to the direct limits are injective.

          noncomputable def Ring.DirectLimit.map {ι : Type u_1} [Preorder ι] {G : ιType u_2} [(i : ι) → CommRing (G i)] {f : (i j : ι) → i jG i →+* G j} {G' : ιType u_4} [(i : ι) → CommRing (G' i)] {f' : (i j : ι) → i jG' i →+* G' j} (g : (i : ι) → G i →+* G' i) (hg : ∀ (i j : ι) (h : i j), (g j).comp (f i j h) = (f' i j h).comp (g i)) :
          (Ring.DirectLimit G fun (x x_1 : ι) (h : x x_1) => (f x x_1 h)) →+* Ring.DirectLimit G' fun (x x_1 : ι) (h : x x_1) => (f' x x_1 h)

          Consider direct limits lim G and lim G' with direct system f and f' respectively, any family of ring homomorphisms gᵢ : Gᵢ ⟶ G'ᵢ such that g ∘ f = f' ∘ g induces a ring homomorphism lim G ⟶ lim G'.

          Equations
          • One or more equations did not get rendered due to their size.
          Instances For
            @[simp]
            theorem Ring.DirectLimit.map_apply_of {ι : Type u_1} [Preorder ι] {G : ιType u_2} [(i : ι) → CommRing (G i)] {f : (i j : ι) → i jG i →+* G j} {G' : ιType u_4} [(i : ι) → CommRing (G' i)] {f' : (i j : ι) → i jG' i →+* G' j} (g : (i : ι) → G i →+* G' i) (hg : ∀ (i j : ι) (h : i j), (g j).comp (f i j h) = (f' i j h).comp (g i)) {i : ι} (x : G i) :
            (Ring.DirectLimit.map g hg) ((Ring.DirectLimit.of G (fun (x x_1 : ι) (h : x x_1) => (f x x_1 h)) i) x) = (Ring.DirectLimit.of G' (fun (x x_1 : ι) (h : x x_1) => (f' x x_1 h)) i) ((g i) x)
            @[simp]
            theorem Ring.DirectLimit.map_id {ι : Type u_1} [Preorder ι] {G : ιType u_2} [(i : ι) → CommRing (G i)] {f : (i j : ι) → i jG i →+* G j} :
            Ring.DirectLimit.map (fun (x : ι) => RingHom.id (G x)) = RingHom.id (Ring.DirectLimit G fun (x x_1 : ι) (h : x x_1) => (f x x_1 h))
            theorem Ring.DirectLimit.map_comp {ι : Type u_1} [Preorder ι] {G : ιType u_2} [(i : ι) → CommRing (G i)] {f : (i j : ι) → i jG i →+* G j} {G' : ιType u_4} [(i : ι) → CommRing (G' i)] {f' : (i j : ι) → i jG' i →+* G' j} {G'' : ιType u_5} [(i : ι) → CommRing (G'' i)] {f'' : (i j : ι) → i jG'' i →+* G'' j} (g₁ : (i : ι) → G i →+* G' i) (g₂ : (i : ι) → G' i →+* G'' i) (hg₁ : ∀ (i j : ι) (h : i j), (g₁ j).comp (f i j h) = (f' i j h).comp (g₁ i)) (hg₂ : ∀ (i j : ι) (h : i j), (g₂ j).comp (f' i j h) = (f'' i j h).comp (g₂ i)) :
            (Ring.DirectLimit.map g₂ hg₂).comp (Ring.DirectLimit.map g₁ hg₁) = Ring.DirectLimit.map (fun (i : ι) => (g₂ i).comp (g₁ i))
            noncomputable def Ring.DirectLimit.congr {ι : Type u_1} [Preorder ι] {G : ιType u_2} [(i : ι) → CommRing (G i)] {f : (i j : ι) → i jG i →+* G j} {G' : ιType u_4} [(i : ι) → CommRing (G' i)] {f' : (i j : ι) → i jG' i →+* G' j} (e : (i : ι) → G i ≃+* G' i) (he : ∀ (i j : ι) (h : i j), (e j).toRingHom.comp (f i j h) = (f' i j h).comp (e i)) :
            (Ring.DirectLimit G fun (x x_1 : ι) (h : x x_1) => (f x x_1 h)) ≃+* Ring.DirectLimit G' fun (x x_1 : ι) (h : x x_1) => (f' x x_1 h)

            Consider direct limits lim G and lim G' with direct system f and f' respectively, any family of equivalences eᵢ : Gᵢ ≅ G'ᵢ such that e ∘ f = f' ∘ e induces an equivalence lim G ⟶ lim G'.

            Equations
            Instances For
              theorem Ring.DirectLimit.congr_apply_of {ι : Type u_1} [Preorder ι] {G : ιType u_2} [(i : ι) → CommRing (G i)] {f : (i j : ι) → i jG i →+* G j} {G' : ιType u_4} [(i : ι) → CommRing (G' i)] {f' : (i j : ι) → i jG' i →+* G' j} (e : (i : ι) → G i ≃+* G' i) (he : ∀ (i j : ι) (h : i j), (e j).toRingHom.comp (f i j h) = (f' i j h).comp (e i)) {i : ι} (g : G i) :
              (Ring.DirectLimit.congr e he) ((Ring.DirectLimit.of G (fun (x x_1 : ι) (h : x x_1) => (f x x_1 h)) i) g) = (Ring.DirectLimit.of G' (fun (x x_1 : ι) (h : x x_1) => (f' x x_1 h)) i) ((e i) g)
              theorem Ring.DirectLimit.congr_symm_apply_of {ι : Type u_1} [Preorder ι] {G : ιType u_2} [(i : ι) → CommRing (G i)] {f : (i j : ι) → i jG i →+* G j} {G' : ιType u_4} [(i : ι) → CommRing (G' i)] {f' : (i j : ι) → i jG' i →+* G' j} (e : (i : ι) → G i ≃+* G' i) (he : ∀ (i j : ι) (h : i j), (e j).toRingHom.comp (f i j h) = (f' i j h).comp (e i)) {i : ι} (g : G' i) :
              (Ring.DirectLimit.congr e he).symm ((Ring.DirectLimit.of G' (fun (x x_1 : ι) (h : x x_1) => (f' x x_1 h)) i) g) = (Ring.DirectLimit.of G (fun (x x_1 : ι) (h : x x_1) => (f x x_1 h)) i) ((e i).symm g)
              instance Field.DirectLimit.nontrivial {ι : Type u_1} [Preorder ι] (G : ιType u_2) [Nonempty ι] [IsDirected ι fun (x1 x2 : ι) => x1 x2] [(i : ι) → Field (G i)] (f' : (i j : ι) → i jG i →+* G j) [DirectedSystem G fun (x1 x2 : ι) (x3 : x1 x2) => (f' x1 x2 x3)] :
              Nontrivial (Ring.DirectLimit G fun (x1 x2 : ι) (x3 : x1 x2) => (f' x1 x2 x3))
              theorem Field.DirectLimit.exists_inv {ι : Type u_1} [Preorder ι] (G : ιType u_2) [Nonempty ι] [IsDirected ι fun (x1 x2 : ι) => x1 x2] [(i : ι) → Field (G i)] (f : (i j : ι) → i jG iG j) {p : Ring.DirectLimit G f} :
              p 0∃ (y : Ring.DirectLimit G f), p * y = 1
              noncomputable def Field.DirectLimit.inv {ι : Type u_1} [Preorder ι] (G : ιType u_2) [Nonempty ι] [IsDirected ι fun (x1 x2 : ι) => x1 x2] [(i : ι) → Field (G i)] (f : (i j : ι) → i jG iG j) (p : Ring.DirectLimit G f) :

              Noncomputable multiplicative inverse in a direct limit of fields.

              Equations
              Instances For
                theorem Field.DirectLimit.mul_inv_cancel {ι : Type u_1} [Preorder ι] (G : ιType u_2) [Nonempty ι] [IsDirected ι fun (x1 x2 : ι) => x1 x2] [(i : ι) → Field (G i)] (f : (i j : ι) → i jG iG j) {p : Ring.DirectLimit G f} (hp : p 0) :
                theorem Field.DirectLimit.inv_mul_cancel {ι : Type u_1} [Preorder ι] (G : ιType u_2) [Nonempty ι] [IsDirected ι fun (x1 x2 : ι) => x1 x2] [(i : ι) → Field (G i)] (f : (i j : ι) → i jG iG j) {p : Ring.DirectLimit G f} (hp : p 0) :
                @[reducible, inline]
                noncomputable abbrev Field.DirectLimit.field {ι : Type u_1} [Preorder ι] (G : ιType u_2) [Nonempty ι] [IsDirected ι fun (x1 x2 : ι) => x1 x2] [(i : ι) → Field (G i)] (f' : (i j : ι) → i jG i →+* G j) [DirectedSystem G fun (x1 x2 : ι) (x3 : x1 x2) => (f' x1 x2 x3)] :
                Field (Ring.DirectLimit G fun (x1 x2 : ι) (x3 : x1 x2) => (f' x1 x2 x3))

                Noncomputable field structure on the direct limit of fields. See note [reducible non-instances].

                Equations
                Instances For