Lemmas about quotients in characteristic zero #
theorem
AddSubgroup.zsmul_mem_zmultiples_iff_exists_sub_div
{R : Type u_1}
[DivisionRing R]
[CharZero R]
{p : R}
{r : R}
{z : ℤ}
(hz : z ≠ 0)
:
z • r ∈ AddSubgroup.zmultiples p ↔ ∃ (k : Fin z.natAbs), r - ↑k • (p / ↑z) ∈ AddSubgroup.zmultiples p
z • r
is a multiple of p
iff r
is pk/z
above a multiple of p
, where 0 ≤ k < |z|
.
theorem
AddSubgroup.nsmul_mem_zmultiples_iff_exists_sub_div
{R : Type u_1}
[DivisionRing R]
[CharZero R]
{p : R}
{r : R}
{n : ℕ}
(hn : n ≠ 0)
:
n • r ∈ AddSubgroup.zmultiples p ↔ ∃ (k : Fin n), r - ↑k • (p / ↑n) ∈ AddSubgroup.zmultiples p
theorem
QuotientAddGroup.zmultiples_zsmul_eq_zsmul_iff
{R : Type u_1}
[DivisionRing R]
[CharZero R]
{p : R}
{ψ : R ⧸ AddSubgroup.zmultiples p}
{θ : R ⧸ AddSubgroup.zmultiples p}
{z : ℤ}
(hz : z ≠ 0)
:
theorem
QuotientAddGroup.zmultiples_nsmul_eq_nsmul_iff
{R : Type u_1}
[DivisionRing R]
[CharZero R]
{p : R}
{ψ : R ⧸ AddSubgroup.zmultiples p}
{θ : R ⧸ AddSubgroup.zmultiples p}
{n : ℕ}
(hz : n ≠ 0)
: