Documentation

Mathlib.Algebra.Category.MonCat.ForgetCorepresentable

The forget functor is corepresentable #

The forgetful functor AddCommMonCat.{u} ⥤ Type u is corepresentable by ULift. Similar results are obtained for the variants CommMonCat, AddMonCat and MonCat.

The equivalence (Multiplicative ℕ →* α) ≃ α for any monoid α.

Equations
Instances For
    @[simp]
    theorem MonoidHom.fromMultiplicativeNatEquiv_apply (α : Type u) [Monoid α] (φ : Multiplicative →* α) :
    (MonoidHom.fromMultiplicativeNatEquiv α) φ = φ (Multiplicative.ofAdd 1)

    The equivalence (ULift (Multiplicative ℕ) →* α) ≃ α for any monoid α.

    Equations
    Instances For
      @[simp]
      theorem MonoidHom.fromULiftMultiplicativeNatEquiv_symm_apply_apply (α : Type u) [Monoid α] (a✝ : α) (a✝¹ : ULift.{u, 0} (Multiplicative )) :
      ((MonoidHom.fromULiftMultiplicativeNatEquiv α).symm a✝) a✝¹ = a✝ ^ Multiplicative.toAdd (MulEquiv.ulift a✝¹)
      def AddMonoidHom.fromNatEquiv (α : Type u) [AddMonoid α] :
      ( →+ α) α

      The equivalence (ℤ →+ α) ≃ α for any additive group α.

      Equations
      Instances For
        @[simp]
        theorem AddMonoidHom.fromNatEquiv_apply (α : Type u) [AddMonoid α] (φ : →+ α) :
        @[simp]

        The equivalence (ULift ℕ →+ α) ≃ α for any additive monoid α.

        Equations
        Instances For
          @[simp]
          theorem AddMonoidHom.fromULiftNatEquiv_symm_apply_apply (α : Type u) [AddMonoid α] (a✝ : α) (a✝¹ : ULift.{u, 0} ) :
          ((AddMonoidHom.fromULiftNatEquiv α).symm a✝) a✝¹ = AddEquiv.ulift a✝¹ a✝