The forget functor is corepresentable #
The forgetful functor AddCommMonCat.{u} ⥤ Type u
is corepresentable
by ULift ℕ
. Similar results are obtained for the variants CommMonCat
, AddMonCat
and MonCat
.
The equivalence (Multiplicative ℕ →* α) ≃ α
for any monoid α
.
Equations
- MonoidHom.fromMultiplicativeNatEquiv α = { toFun := fun (φ : Multiplicative ℕ →* α) => φ (Multiplicative.ofAdd 1), invFun := fun (x : α) => (powersHom α) x, left_inv := ⋯, right_inv := ⋯ }
Instances For
@[simp]
theorem
MonoidHom.fromMultiplicativeNatEquiv_symm_apply
(α : Type u)
[Monoid α]
(x : α)
:
(MonoidHom.fromMultiplicativeNatEquiv α).symm x = (powersHom α) x
@[simp]
theorem
MonoidHom.fromMultiplicativeNatEquiv_apply
(α : Type u)
[Monoid α]
(φ : Multiplicative ℕ →* α)
:
(MonoidHom.fromMultiplicativeNatEquiv α) φ = φ (Multiplicative.ofAdd 1)
def
MonoidHom.fromULiftMultiplicativeNatEquiv
(α : Type u)
[Monoid α]
:
(ULift.{u, 0} (Multiplicative ℕ) →* α) ≃ α
The equivalence (ULift (Multiplicative ℕ) →* α) ≃ α
for any monoid α
.
Equations
Instances For
@[simp]
theorem
MonoidHom.fromULiftMultiplicativeNatEquiv_apply
(α : Type u)
[Monoid α]
(a✝ : ULift.{u, 0} (Multiplicative ℕ) →* α)
:
(MonoidHom.fromULiftMultiplicativeNatEquiv α) a✝ = a✝ (MulEquiv.ulift.symm (Multiplicative.ofAdd 1))
@[simp]
theorem
MonoidHom.fromULiftMultiplicativeNatEquiv_symm_apply_apply
(α : Type u)
[Monoid α]
(a✝ : α)
(a✝¹ : ULift.{u, 0} (Multiplicative ℕ))
:
((MonoidHom.fromULiftMultiplicativeNatEquiv α).symm a✝) a✝¹ = a✝ ^ Multiplicative.toAdd (MulEquiv.ulift a✝¹)
The equivalence (ℤ →+ α) ≃ α
for any additive group α
.
Equations
- AddMonoidHom.fromNatEquiv α = { toFun := fun (φ : ℕ →+ α) => φ 1, invFun := fun (x : α) => (multiplesHom α) x, left_inv := ⋯, right_inv := ⋯ }
Instances For
@[simp]
theorem
AddMonoidHom.fromNatEquiv_apply
(α : Type u)
[AddMonoid α]
(φ : ℕ →+ α)
:
(AddMonoidHom.fromNatEquiv α) φ = φ 1
@[simp]
theorem
AddMonoidHom.fromNatEquiv_symm_apply
(α : Type u)
[AddMonoid α]
(x : α)
:
(AddMonoidHom.fromNatEquiv α).symm x = (multiplesHom α) x
The equivalence (ULift ℕ →+ α) ≃ α
for any additive monoid α
.
Equations
- AddMonoidHom.fromULiftNatEquiv α = (AddMonoidHom.precompEquiv AddEquiv.ulift.symm α).trans (AddMonoidHom.fromNatEquiv α)
Instances For
@[simp]
theorem
AddMonoidHom.fromULiftNatEquiv_apply
(α : Type u)
[AddMonoid α]
(a✝ : ULift.{u, 0} ℕ →+ α)
:
(AddMonoidHom.fromULiftNatEquiv α) a✝ = a✝ (AddEquiv.ulift.symm 1)
@[simp]
theorem
AddMonoidHom.fromULiftNatEquiv_symm_apply_apply
(α : Type u)
[AddMonoid α]
(a✝ : α)
(a✝¹ : ULift.{u, 0} ℕ)
:
((AddMonoidHom.fromULiftNatEquiv α).symm a✝) a✝¹ = AddEquiv.ulift a✝¹ • a✝
The forgetful functor MonCat.{u} ⥤ Type u
is corepresentable.
Equations
Instances For
The forgetful functor CommMonCat.{u} ⥤ Type u
is corepresentable.
Equations
Instances For
The forgetful functor AddMonCat.{u} ⥤ Type u
is corepresentable.
Equations
Instances For
The forgetful functor AddCommMonCat.{u} ⥤ Type u
is corepresentable.
Equations
Instances For
instance
AddCommMonCat.forget_isCorepresentable :
(CategoryTheory.forget AddCommMonCat).IsCorepresentable